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Abstract— We propose a new, data-efficient approach for
skill transfer to novel objects, accounting for known categorical
shape variation. A low-dimensional shape representation em-
bedding is learned from a set of deformations, sampled between
known objects within a category. This latent representation is
mapped to a set of control parameters that result in successful
execution of a category-level skill on that object. This method
generalizes a learned manipulation policy to unseen objects
with few training examples. We demonstrate this approach on
pouring from cups and scooping with spatulas, where there is
complex, nonlinear variation of successful control parameters
across objects.

I. INTRODUCTION

A primary concern of research in robotic manipulation is
generalization in representation: How can a robot learn, from
a small number of example demonstrations of a skill, to apply
that same skill to many differently-shaped objects? We focus
on a broad class of skills in which particular aspects of object
geometry dictate the details of skill execution.

The objects used in many manipulation skills have similar
geometric features that afford that manipulation, and define
a natural category: for example, we might expect the objects
used in a scooping task all to have some holding surface on
the end of a handle. A control parameterization for a skill can
leverage these affordances to generalize across a category.
The key to effective generalization is to identify the shape
features that play a functional role in the object’s use. By
definition, those are exactly the features that are in common
across all objects in the category: the class of pitchers may
have a wide variety of aesthetic shape variability that is
irrelevant to pouring, but the features they do share are those
that are critical to their function.

In this paper, we describe a strategy that combines unsu-
pervised learning of a latent shape description of a functional
category of objects with learning of skills, leveraging that
latent space, from a one or two expert demonstrations
and a small number of self-supervised experiments. We
compare it to existing methods based directly on non-rigid
registration (illustrated in Figure 1) on problems of pouring
from cups and scooping with spatulas, and demonstrate
that it can learn, from even a single expert demonstration,
manipulation strategies that are substantially more robust to
natural category variability.
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Fig. 1: We demonstrate our method on a pouring and scoop-
ing task. The first frame in each row shows a demonstration
on a canonical instance of the shape class. The second frames
show that a state-of-the-art warping of that demonstration
completely fails to solve the problem for a novel shape.
The third frames show results of our method, leveraging a
learned shape embedding to transfer the demonstration to
novel objects.

II. PROBLEM DEFINITION

The problem of shape-based skill transfer (SST) is to
learn a skill from a small number of examples, in cases
where the detailed execution of the skill is driven by the
shape of a single object that is being operated on or used
as a tool. The shape of those objects can vary, but they are
all contained in a category in which the parameters of the
required control strategy can be expressed with a continuous
dependence on the object’s shape. We describe the approach
in terms of a single object, though it could be extended
directly to operations that involve multiple objects, using a
similar mechanism to make the control depend on the shapes
of all of the objects.

The performance task is: given a new object, characterized
by its shape s ∈ S, specified by a set of M 3D points given
as a M × 3 matrix, to generate trajectory parameters that
will perform a desired skill effectively, where the success
of a particular skill execution on a particular object can
be measured by a scalar cost in R. We assume a fixed-
dimensional parameter space Ψ = Rd that specifies a
trajectory of object poses, and a low-level robot controller
that can achieve that pose sequence with linear Cartesian
interpolation. We ultimately seek a policy π : S → Ψ that
maps shapes to trajectory parameters, in a way minimizing
expected cost over the distribution of object shapes found in
the world.



Fig. 2: Illustration of the method, including offline learning phase and online adaptation to a new object.

We are given data in two forms:
• Shape data DS = {s(i)}NSi=1, where s(i) ∈ S for all i.

This data characterizes the distribution of shapes that
the learned skill needs to cover.

• Policy data Dπ = {(s(i), ψ(i), c(i))}Nπi=1 where s(i) ∈
S, ψ(i) ∈ Ψ, and c(i) ∈ R. This data indicates, for
combinations of shapes and control parameters, the cost
of executing that control trajectory with that shape.

We separate these datasets because, when learning, it may
be easier to get multiple demonstrations using the same few
objects, and be difficult to get demonstrations using many
different objects. however, object shapes from the category
might be easy to acquire via another channel, such as a
collection of object images, point-clouds, or meshes. Our
goal is to be able to learn the skill policy efficiently from a
small number of examples in each of these data sets.

III. APPROACH

Our approach is to decompose the policy learning into two
learning sub-problems. We define the policy

π(s) = arg min
ψ∈Ψ

C(E(s), ψ) ,

where E is a learned embedding of S into a low-dimensional
latent space Θ = Rd, and C : Θ × Ψ → R is a function
mapping a shape representation E(s) and control parameters
ψ into the cost of executing the trajectory resulting from
parameters ψ on an object with shape s in the world. Because
of the structure of the provided data, it is natural to use
the shape data to learn an embedding representation for
shapes, and the policy data to learn the cost function given
that embedding. One counterproposal might be to train the
system “end-to-end” rather than performing an unsupervised
representation-learning phase, but we would not be most
effectively using both of our data sets in that mode.

We take the approach of learning a cost function on pairs
of a shape and controller parameters, rather than the more

direct strategy of learning a direct mapping from shape to
control parameters for several reasons:

• There may be many suitable, but very different, control
parameters ψ for a single s, and we do not want to
average them during training. For example, we could
successfully flip a pancake over from the left or from
the right, but the average of those strategies would fail.

• It is very difficult to get the expert-only control strate-
gies that would be needed to train the direct policy;
by learning the cost function, we can make use of
non-expert demonstrations as well as the results of the
robot’s own experimentation, resulting in more training
data and more robust learning.

• Only a subset of possible ψ values can be feasibly
executed by the robot; constraining a regression model
to only produce valid outputs can be difficult.

• We may want to use this learned skill in a larger context,
such as a task and motion planning system [1], [2],
where some variations of the control (such as flipping
the pancake from the left) might be impossible in the
current situation because of environmental constraints
(such as occlusions by other objects or kinematic con-
straints of the robot) not directly considered when
learning the controller. Knowing a scoring function
enables selecting diverse candidate actions by intelligent
sampling of the set of controls that have high scores for
the current object shape under some given precondition.

A. Learning the shape embedding

It is notoriously difficult to represent 3D shapes as points
in a vector space in a way that enables effective gener-
alization. We follow the strategy, described by Rodriguez
and Behnke [3], which rather than representing the shape of
each object directly, represents the difference, articulated as a
continuous warping transformation, between each object and
a canonical object from the set. These transformations are



simpler to describe and, hence, easier to learn, than general
shape models.

1) Selecting the canonical instance: We begin by finding
a canonical instance of the given category; it will be an
element of the shape data set DS = {s(i)}NSi=1. We assume
that elements s of the set S of shapes are represented by M
points sampled uniformly from the volume contained in the
object’s watertight mesh (note that the interior of a cup is
not included in this sampling).

Our objective will be to represent the shapes of all other
objects s(i) in the category as some transformation of the
canonical object s(C), so that s(i) ≈ Ti(s(C)) for all i. It is
important to note that this means that the shape s(i) will be
approximately the same as the shape Ti(s(C)), but the order
of points in the vector will not necessarily be the same.

The ideal canonical instance will have the property that
it can be accurately transformed to most other instances,
but this metric is difficult to evaluate for objects with many
complex features. Instead, we have found that a simple
distance metric is easy to optimize and results in reliable
selection of effective canonical shapes. Our metric on shapes
is the summed Cartesian distances between each point in one
shape s(i) and the closest point on shape s(j):

D(s(i), s(j)) =

M∑
m=1

min
n
‖s(i)
m − s(j)

n ‖ .

It is important to note that this metric is insensitive to the
ordering of the individual points in the shape descriptions
within the matrices s(i) and s(j), so there is no requirement
for them to “match up.” We select the canonical object to be
the one that has the minimum summed distance to all other
objects:

s(C) = arg min
s∈DS

NS∑
i=0

D(s, s(i)) .

Informal experimentation has shown that this strategy for
selecting a canonical object performs well in practice.

2) Transforming the canonical instance: We model the
transformation between the canonical object and instance
s(i), Ti, as an additive offset to each point in the canonical
object,

Ti(s(C)) = s(C) +Wi ,

where Wi is an M×3 matrix. Although simply letting Wi =
s(i)−s(C) would result in perfect reconstruction of the input
shapes, it would be highly sensitive to the ordering of the
points in the representation of s(i); this would make the Wi

for different examples shapes be incommensurate and would
not serve as an effective representation for future learning.

Instead, again following Rodriguez and Behnke [3], we
use the coherent point drift (CPD) algorithm proposed by
Myronenko and Song [4]. CPD is an approach to non-rigid
registration that models the points in target instance s(i)

as samples from a Gaussian mixture model (GMM) with
component means that are the transformed points in s(C),
with the mixture weights determined by the distance between
a point and the means of the mixture components and with

additional regularization constraining neighboring points to
move in similar ways.

CPD finds matrix Wi by minimizing the negative log
likelihood of all of the 3D points in the vector representing
the transformed version of s(i), which is s(C)+Wi, assuming
they are drawn according to the GMM specified by s(C). This
leads us to a regularized cost function

J(Wi) = −
M∑
n=1

log

M∑
m=1

exp(
− 1

2σ2
‖s(i)
n − (s(C) +Wi)m‖

)
+
λ

2
φ(Wi) ,

where φ(W ) is a regularization of the displacement ma-
trix, and λ represents a trade-off between regularization
and goodness-of-fit. Crucially, this likelihood measure is
insensitive to the ordering of the points in the description
of s(i): each point in the transformed canonical shape has
to be near some point in s(i), but the elements Wi are
“ordered” according to the ordering of points in s(C), so the
Wi can be sensibly seen as living continuously in the same
space. The objective J(Wi) is minimized using expectation
maximization, yielding a warp matrix Wi for each training
shape s(i).

3) Constructing the latent space of transformations: In
order to represent shape variation effectively for computing
the warp transforms, the number of points representing an
object, M , needs to be high enough to model relevant object
features. In our experiments, each cup was represented by ap-
proximately 1500 points, and each spatula by approximately
1000. Our goal is to learn to map a new shape to effective
control parameters from few examples; to achieve such a
low sample complexity, we need a much more compact
representation of shapes. So, we seek a low-dimensional
embedding of the warp matrices W , much smaller than the
complete pointcloud representation.

We begin by “flattening” each M×3 warp matrix Wi into
a length 3M vector Wi, and let W be the stack of NS vectors
Wi. A straightforward strategy for dimensionality reduction
is principal components analysis (PCA). We perform PCA on
W̄ to reduce the dimensionality of our transforms from 3M
to D, obtaining a 3M ×D matrix L such that Wi L is now
a low-dimensional representation of shape s(i).

An alternative strategy for finding a low-dimensional em-
bedding of the shape warps would be to use a neural-network
auto-encoder. We experimented with this method but found
that PCA was more effective, particularly in the reduced-data
regime. The table below shows mean reconstruction error
for two methods of finding a low-dimensional embedding:
PCA and an auto-encoder with a RELU-activation hidden
layer. Both were trained on warps between a canonical
spatula shape and between 6 and 200 other spatula exam-
ples, restarted 5 times. The metric shown is the average
reconstruction error per point, in meters, when using the
5-dimensional latent space representation produced by each
model to reconstruct 10 randomly selected novel spatulas.
The auto-encoder’s performance degrades more quickly as



the number of training examples is reduced, making PCA
the preferred option for small numbers of example objects.

examples 6 50 100 500

PCA 0.0465 0.0396 0.0407 0.0262
±0.0014 ±0.0030 ±0.0048 ±0.0006

auto-encoder 0.0504 0.0404 0.0448 0.0296
±0.0065 ±0.0148 ±0.0101 ±0.0070

B. Learning the cost function

Now that we have constructed a compact representation
of shapes, we can focus on learning the cost function. Our
first step is to transform the policy training data Dπ =
{(s(i), ψ(i), c(i))}Nπi=1 using the shape representation we have
just constructed, as shown in the left of Figure 2. Letting
D be the dimension used in PCA, each shape s(i) can be
represented as an element θ(i) ∈ RD where θ(i) = LWi ,
allowing us to re-represent our data as

Dπ = {(θ(i), ψ(i), c(i))}Nπi=1 .

Now all components are real-valued vectors or scalars suit-
able for standard ML methods.

We train a Gaussian process (GP) regression model on
this data, which yields a distribution φ(C | θ, ψ) on the cost
of executing control ψ on an object with shape θ. A GP is
an effective model for relatively low-dimensional data, com-
pared to pixel or pointcloud representations, and provides
an estimate of certainty along with its output prediction,
allowing us to select for minimum cost predictions with
higher confidence. This is a useful strategy when selecting
control parameters, as it allows us to identify the “safest”
proposed parameters for a given shape that are unlikely to
result in unpredictable behavior.

C. Making predictions

When the robot encounters a new object with shape s(new)

to use in performing the learned skill, we begin by finding
a representation for it in Θ space. If we had a complete
point-cloud for the new shape, then we might take the direct
approach of using CPD to find the transform Wnew from s(C)

to s(new) and then letting θ(new) = LWnew.
However, while we assumed that we had full point-cloud

models for shapes at training time, when we need to perform
a skill with a novel object, we may only have access to a
partial or occluded model. So, in order to get a more robust
representation of the new object in Θ space, we search in
the latent space for a representation that is a good match,
allowing us to find a best fit for even incomplete models.

A point θ(o) ∈ Θ can be post-multipied by LT and
reshaped to obtain a transformation Wo that transforms SC

to a candidate point set s(o). Our aim is to find the θ(o) that
produces an s(o) closest to s(new), as measured by minimizing
the summed closest-point distance D. So, we would like to
find

θ(new) = arg min
θ

(D(s(new), s(C) + θ LT )) .

We find θ(new) by performing gradient descent in the latent
space, beginning at a randomly sampled initial proposal point
θ0. This strategy is much more robust in the face of partial
shape descriptor s(new).

Now that we have found a latent-space representation of
the novel object θ(new), we randomly sample a set of proposal
control parameters ψ1..N from the range of possible values
and select the ψ(new) with the lowest predicted upper bound
on C:

ψ(new) = arg min
ψ∈ψ1..N

(µC(ψ) + .25σC(ψ)) .

For sufficiently low-dimensional Ψ, this is a feasible way
to identify the best control parameters. For a higher-
dimensional Ψ, it may be necessary to select potential ψ(new)

to evaluate using a more informed approach, such as gradient
descent, to identify ψ(new). Success by this metric means a
low cost when executing the task on a novel object. The
selected parameters ψ(new) are used to generate a trajectory
for execution, T (ψ(new)).

IV. RELATED WORK

There are a number of existing approaches to transfer
manipulation skills across objects varying in shape.

Schulman et al. [5] and Lee et al. [6] describe a method
for adapting task demonstrations across objects of varying
geometry by performing non-rigid registration between a
known scene and a novel one. The warp obtained between
these scenes is then applied to a demonstrated trajectory
found to be successful in the known scene. This approach is
limited to skills where the warping transformations can be
applied to both shape and trajectory parameters. Furthermore,
it may not be the case that the transformation between shapes
will be effective for the trajectory for some skills. This is
illustrated in Figure 1. Even for these simple skills, the trans-
formed trajectories are not successful, because the impact of
the novel objects’ geometry on a successful trajectory is not
adequately accounted for.

Manuelli et al. [7] describe a rigid keypoint representation
to generalize a manipulation skill across a category. They
train a deep neural network to identify a set of handpicked,
labeled keypoints that are useful for defining a task on images
of objects in a category. They then plan a path between the
keypoints’ initial and desired final positions to complete the
task. Florence and Manuelli [8] describe a method of grasp
transfer using dense visual object descriptors to establish
functional equivalency across deformed objects. Our method,
in comparison, learns features from geometric models and
requires less training data.

Hillenbrand and Roa [9] present a method for grasp
transfer relying on local replanning around a warped contact
point. Rodriguez and Behnke [3] explore the transfer of
grasping skills to novel objects by learning a linear latent-
space representation of object features. Sampled grasps on
a range of objects are transformed to form a distribution
of grasps on the canonical object, and a linear regressor
is trained to predict each grasp given the latent-space rep-
resentation. Our method relies on a similar latent object



representation, but instead of transforming our control policy
into the canonical object’s space and learning a regression,
or locally replanning, we instead learn the nonlinear cost
function, choosing the control parameters conditioned on the
object’s representation. This allows us to learn a more general
class of skills, and also supports sampling multiple solutions.

Brandi et al. [10] capture intra-category variation by
warping between objects, tracking the warping of a selected
set of measured features, which are then used as parameters
in a probabilistic motion primitive (PROMP) that describes
the skill policy. When executing the skill on a novel object,
a trajectory is sampled from the PROMP, and transformed
by the measured warps of selected features. Our approach
instead discovers important features through learning a low-
dimensional embedding, rather than explicitly measuring
important selected features. We also learn the potentially
nonlinear relationship between trajectory and execution cost,
rather than constrained variations of the trajectory based on
measured features.

V. EXPERIMENTS

We demonstrate our SST method on two tasks and compare
its performance to a state-of-the-art baseline as well as
several ablations.

A. Task domains

We consider two fairly different task domains, imple-
mented in a PyBullet physics simulation: pouring small
particles out of cups of varying shapes and scooping up a
“patty” with spatulas of varying shapes and lengths.

a) Control parameterization: In both skills, the con-
trol space ψ is 6-dimensional, (x1, y1, z1, x2, y2, z2), where
(x1, y1, z1) represent a point in 3-space and the vector
between that point and (x2, y2, z2) represent its orientation.
We choose this representation because it is effective and
because it simplifies comparison with the baseline method,
which requires a point-based representation. We can think of
ψ as an oriented point on the object, although in fact it need
not actually be physically on the object’s surface.

The pouring skill has a fixed target frame f , which is
centered on the target receptacle in x and y, and 10cm above
its top in z. The controller, T (ψ), interpolates between the
initial pose of object frame ψ and an object pose specified
by ψ = f . This interpolation is linear but happens in two
separate phases: first the cup is translated so the positions
of ψ and f are equal. Then the cup is rotated to match the
orientations.

The scooping skill has a fixed target frame f , centered on
the patty in x, 25 cm forwards in y, and 40 cm above it in
z. This controller also has two stages: first, it interpolates
between the initial pose of frame ψ on the spatula and an
intermediary pose aligned with the X − Y position of f ,
with Z-axis perpendicular to the table surface, over 25 time
steps; then it moves ψ between the intermediary pose and
the target frame f , linearly interpolating all 6 axes over 25
time steps.

b) Cost functions: The cost of a pouring skill execution
is determined by the fraction of the 40 particles that begin
inside the cup that do not end up in the target receptacle. The
cost of a scooping skill execution is the distance of the patty
from its final goal position on top of the elevated spatula.

c) Data sets and experiment procedure: Figure 3 il-
lustrates the objects used in both tasks and shows the
effectiveness of the basic WARP strategy on each one.

For each skill, we begin with one or two expert demon-
strations on each object in Dπ . We use the GP-UCB al-
gorithm [11] to select additional values ψ(k), for each
distinct θ(i), where it would be most informative to carry
out additional self-supervised experiments, and compute the
associated cost values by executing them in the PyBullet
simulation. The results are added to the dataset and the
process is repeated.

In the pouring experiments, we use a set of 12 cup shapes,
each represented as a set of meshes comprising a convex
decomposition of the shape (the convex decomposition is
necessary for PyBullet to simulate containment of the par-
ticles.) We generate shape data-sets DS by taking random
subsets of 7 of the 12 cups. We generate policy data-sets
Dπ by collecting a set of 50 training executions with each
cup, driven by GP-UCB as described above. The control
parameters selected by GP-UCB are passed to the simulator
to produce a cost score. To illustrate the capacity of SST to
learn multi-modal skills, we initialize the GP with two good
demonstration pours, one from the left and one from the
right, so the dataset will include both types of examples.

The setup is identical for the scooping experiments, except
that only a single demonstration is used to initialize the GP
for each spatula, scooping from the left.

In both domains, to execute an experiment, we (1) select a
random subset of 7 objects for the shape data set, (2) select 4
of the remaining objects for the policy data set, train the SST,
and then evaluate its performance by executing the skill in
simulation 20 times on the held-out object and recording its
cost. Finally, for both tasks, we test with partial point-cloud
observations of the objects at performance time.

B. Comparisons

We compare SST against several baselines: warping, and
two ablations of SST.
• Warping (W) directly warps a demonstration from a

known object to a novel one using the learned warp
matrix Wi, by identifying the points representing the
reference frame ψ for the demonstration pour on the
previously identified canonical object, calculating the
warp matrix W between it and the novel object, and
applying this transformation to the points representing
the demonstration reference frame, resulting in the
reference frame of the novel object. The demonstration
points are selected from the points of the canonical
object so that their new location after the application
of the warp W can be extracted.

• Features (FSST) is a method that lets the shape rep-
resentation Θ be a set of ideal handpicked features



Canonical 0.000 0.000 0.000 0.000 0.116 0.117 0.983 1.000 1.000 1.000 1.000

Canonical 0.000 0.000 0.000 0.000 0.000 0.600 0.600 1.000 1.000 1.000 1.000

Fig. 3: Objects used in the experiments; numbers indicate cost of WARPing a demonstration on the first object in the row to
the others.

rather than a learned latent space, but uses SST’s second
phase unchanged. We include this to represent an ”upper
bound” on performance and measure the effectiveness
of the latent-space learning. For cups, these parameters
are the height, maximum diameter, lip diameter, and
height of the widest point. For spatulas, they are the
angle of the handle, the thickness of the spatula head,
the length and width of the head, and angle of the tip.

• Regress (R) is a method that learns a regression directly
from θ. In the case of cups, one of the two demonstra-
tion pours, from the right or from the left, is randomly
selected. A GP is trained on the 5 datapoints, predicting
the control parameters ψ from the object’s shape.

C. Results

We perform this process, beginning with the random
selection of objects to form the latent feature space, 5 times,
performing 20 actions with each of the 5 objects excluded
for testing, evaluating 500 actions total for each method. The
difference between the cost of each action and the averaged
cost of the warping baseline performed on each provided
demonstration are reported below, where a negative value
indicates lower cost (better performance) than the baseline.

The table below contains the results of these experiments.
We report the mean scores relative to score of the warp
method and perform paired statistical analysis in that space
to decrease variance, reporting 95% confidence intervals
on the means. We observe that SST performs significantly
better than WARP on both experiments. We ran SST on both
complete and partial point clouds and the performance was
indistinguishable. We note also that SST with ideal features
instead of the learned latent space (FSST, in the table) works
roughly as well as SST, which demonstrates that the latent-
space learning is very effective. Finally, we see that the
ablation of SST in which we perform regression from shape
parameters directly to controls performs very poorly in both
cases, having particular difficulty with the fact that there
are two distinct modes for pouring, which highlights the
importance of our strategy of learning a scoring function.

Pour Scoop

SST-W −0.295± 0.046 −0.362± 0.044
FSST-W −0.286± 0.048 −0.393± 0.046
R-W +0.531± 0.194 +0.272± 0.296

Our method outperforms the warping of control parame-
ters between spatulas and regression between the shape and
control parameters, and performs comparably to the use of
handpicked measurements.

VI. DISCUSSION AND FUTURE WORK

Usage of the information available in the geometry of a
manipuland’s shape produces useful features that allow the
robot to learn to successfully execute a task. By estimating
the variation in shape within a category, we can create
a useful embedding representation that is robust to cate-
gorical variations in shape without hand-engineering. This
representation allows us to achieve efficient generalization
to new objects within a category, requiring fewer training
objects to manipulate, and fewer executions on the novel
object to achieve good results. This approach generalizes
to a novel object more efficiently than the use of objects’
geometric features with no consideration for known intra-
category variation in learning, as it requires less training
data and time. It generalizes more effectively than warping
the initial reference frame from one example object to
new objects without learning, as it better captures nonlinear
relationships between object shape and control parameters.
Our formulation of this problem also allows for consideration
of additional contextual parameters beyond object geometry
during skill learning. For the purpose of this work, we focus
solely on object geometry, but the inclusion of additional
environmental information as features at the skill learning
stage would be a straightforward extension of our method.

In future work, we could extend the method to require
weaker initial models, working from partial point-clouds
of the training shapes. This might also allow the robot to
take advantage of cross-category similarities, by identifying
object features (for example, the “cup” part of a mug,
eliminating the handle) and producing a representation for
those known parts. We focused on quasi-static skills in this
paper, which can be learned without explicitly modeling
inertial properties like weight or friction. Tasks requiring
these properties could be addressed in the future with this
method through the use of relevant control parameters.

In summary, finding the shape commonalities across a
functional category of objects and constructing a represen-
tation of those commonalities forms the basis of a method
for learning to score skill executions effectively from a small
amount of data, learning to generalize to novel objects.
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