
Reinforcement Learning for Classical Planning:
Viewing Heuristics as Dense Reward Generators

Clement Gehring*1, Masataro Asai*2, Rohan Chitnis1, Tom Silver1,
Leslie Pack Kaelbling1, Shirin Sohrabi3, Michael Katz3

*: equal contributions. 1MIT, 2MIT-IBM Watson AI Lab, 3IBM Research
{gehring,lpk}@csail.mit.edu, {ronuchit,tslvr}@mit.edu, {masataro.asai,michael.katz1}@ibm.com, ssohrab@us.ibm.com

Abstract

Recent advances in reinforcement learning (RL) have led to
a growing interest in applying RL to classical planning do-
mains and vise versa. However, the long-horizon goal-based
problems found in classical planning lead to sparse rewards
for RL, making direct application inefficient. In this paper, we
propose to leverage domain-independent heuristic functions
commonly used in the classical planning literature to improve
the sample efficiency of RL. These classical heuristics act as
dense reward generators to alleviate the sparse-rewards issue
and our RL agent learns domain-specific value functions as
residuals on these heuristics, making learning easier. Proper
application of this technique requires consolidating the dis-
counted metric in RL and non-discounted metric in heuristics.
We implement the value functions using Neural Logic Ma-
chines, a neural network architecture designed for grounded
first-order logic inputs. We demonstrate on several classical
planning domains that using classical heuristics for RL al-
lows for good sample efficiency compared to sparse-reward
RL. We further show that our learned value functions gener-
alize to novel problem instances in the same domain.

1 Introduction
In the last two decades, research in AI Planning and classi-
cal planning has been primarily driven by the advancement
of sophisticated heuristic forward search techniques, espe-
cially by the identification of tractable fragments of origi-
nally PSPACE-complete planning problems (Bäckström and
Klein 1991; Bylander 1994; Erol, Nau, and Subrahma-
nian 1995; Jonsson and Bäckström 1998a,b; Brafman and
Domshlak 2003; Katz and Domshlak 2008a,b; Katz and
Keyder 2012), and the use of the cost of the tractable re-
laxed problem as heuristic guidance for searching through
the state space of the original problem (Hoffmann and Nebel
2001; Domshlak, Hoffmann, and Katz 2015; Keyder, Hoff-
mann, and Haslum 2012).

Meanwhile, the broader AI community in the last decade
has seen a major surge in deep-learning-based approaches,
driven by remarkable successes in computer vision, natu-
ral language processing, and reinforcement-based policy and
value-function learning in Markov decision processes (Mnih
et al. 2015) and adversarial games (Silver et al. 2016).

Deep reinforcement learning (RL) approaches, in partic-
ular, have several strengths, including compatibility with
complex and unstructured observations, little dependency on

hand-crafted models, and some robustness to stochastic en-
vironments. However, they are notorious for their poor sam-
ple complexity; e.g., it may require 1010 environment inter-
actions to successfully learn a policy for a particular environ-
ment (Badia et al. 2020). This sample inefficiency prevents
their applications in environments where such an exhaustive
set of interactions is physically or financially infeasible. The
issue is amplified in domains with sparse rewards and long
horizons, where the reward signals for success are difficult
to obtain through random interactions with the environment.

Contrary to RL approaches, classical planning has fo-
cused on long-horizon problems with solutions well over
1000 steps long (Jonsson 2007; Asai and Fukunaga 2015).
Moreover, classical planning problems inherently have
sparse rewards — the objective of classical planning is
to produce a sequence of actions that achieves a goal.
However, heuristic search methods in classical planning
are not perfect. A great deal of effort has been spent
on finding domain-independent heuristics, which provide
substantial leverage for forward search. Although domain-
independence is a welcome advantage, these heuristics
can easily be vastly outperformed by carefully engineered
domain-specific methods, such as a specialized solver for
Sokoban (Junghanns and Schaeffer 2000). Developing such
domain-specific heuristics can require intensive engineering
effort, with payoff only in that single domain. We will be
interested in developing domain-independent methods for
learning domain-specific heuristics.

In this paper, we draw on the strengths of reinforcement
learning and classical planning to propose an RL framework
for learning to solve STRIPS planning problems. We pro-
pose to leverage classical heuristics, derivable automatically
from the STRIPS model, to quickly learn a domain-specific
neural network value function. This value function improves
over the domain-independent classical heuristics, and there-
fore can be used to plan more efficiently at evaluation time.

To operationalize this idea, we use potential-based reward
shaping (Ng, Harada, and Russell 1999), a well-known RL
technique with guaranteed theoretical properties. A key in-
sight in our approach is to see classical heuristic functions as
providing dense rewards that greatly accelerate the learning
process in three ways. First, they allow for efficient, informa-
tive exploration by initializing a good baseline reactive agent
that quickly reaches a goal in each episode during training.

Second, instead of learning the value function directly, we
learn a residual on the heuristic value, making learning eas-
ier. Third, the learning agent receives a reward by improv-
ing the heuristic value. This effectively mitigates the issue
of sparse rewards by allowing the agent to receive positive
rewards more frequently.

We implement our neural network value functions as Neu-
ral Logic Machines (Dong et al. 2019, NLM), a recently pro-
posed neural network architecture that can directly process
first-order logic (FOL) inputs, as are used in classical plan-
ning problems. NLM takes a dataset expressed in grounded
FOL representations and learns a set of (continuous relax-
ations of) lifted Horn rules. The main advantage of NLMs
is that they structurally generalize across different numbers
of terms, corresponding to objects in a STRIPS encoding.
Therefore, we find that our learned value functions are able
to generalize effectively to problem instances of arbitrary
sizes in the same domain.

We provide experimental results that validate the effec-
tiveness of the proposed approach in 8 domains from past
IPC benchmarks, providing detailed considerations on the
reproducibility of the experiments. We find that our reward
shaping approach achieves good sample efficiency com-
pared to sparse-reward RL, and that the use of NLMs allows
for generalization to novel problem instances. For example,
our system learns from blocksworld instances with 2-6 ob-
jects, and the result enhances the performance of solving in-
stances with up to 50 objects.

2 Background
We denote a multi-dimensional array in bold. a; b denotes a
concatenation of tensors a and b in the last axis where the
rest of the dimensions are same between a and b. Functions
(e.g., log, exp) are applied to arrays element-wise. Finally,
we let B denote [0, 1].

2.1 Classical Planning
We consider planning problems in the STRIPS subset of
PDDL (Fikes and Nilsson 1972), which for simplicity we
refer to as lifted STRIPS. We denote such a planning prob-
lem as a 5-tuple 〈O,P,A, I,G〉. O is a set of objects, P is
a set of predicates, and A is a set of actions. We denote the
arity of predicates p ∈ P and action a ∈ A as #p and #a, and
their parameters as, e.g., X = (x1, · · · , x#a). We denote the
set of predicates and actions instantiated on O as P (O) and
A(O), respectively, which is a union of Cartesian products
of predicates/actions and their arguments, i.e., they repre-
sent the set of all ground propositions and actions. A state
s ⊆ P (O) represents truth assignments to the propositions,
which can be represented as a bitvector of size

∑
pO

#p.
An action is a 3-tuple 〈PRE(a), ADD(a), DEL(a), COST(a)〉,
where PRE(a), ADD(a), DEL(a) ∈ P (X) are preconditions,
add-effects, and delete-effects, and COST(a) ∈ R is a cost
of taking the action a. In this paper, we primarily assume
a unit-cost domain where COST(a) = 1 for all a. Given a
current state s, a ground action a† ∈ A(O) is applicable
when PRE(a†) ⊆ s, and applying an action a† to s yields a
successor state a†(s) = (s \ DEL(a†)) ∪ ADD(a†). Finally,

I,G ⊆ P (O) are the initial state and a goal condition, re-
spectively. The task of classical planning is to find a plan
(a1†, · · · , an†) which satisfies an† ◦ · · · ◦ a1†(I) ⊆ G and every
action ai† satisfies its preconditions at the time of using it.

2.2 Markov Decision Processes
In general, RL methods address domains modeled as
Markov decision processes (MDP),M = (S,A, T, r, q0, γ)
where S is a set of states, A is a set of actions, T (s, a, s′) :
S ×A×S → B encodes the probability Pr(s′|s, a) of tran-
sitioning from a state s to a successor state s′ by an action
a, r(s, a, s′) : S × A × S → R is a reward function, q0 is
a probability distribution over initial states, and 0 ≤ γ < 1
is a discount factor. In this paper, we restrict our attention to
deterministic models because PDDL domains are determin-
istic, and we have a deterministic mapping T ′ : S×A → S .

Given a policy π : S ×A → B representing a probability
Pr(a|s) of performing an action a in a state s, we define a se-
quence of random variables {St}∞t=0, {At}∞t=0 and {Rt}∞t=0,
representing states, actions and rewards over time t.

Given an MDP, we are interested in finding a policy max-
imizing its long term discounted cumulative rewards, for-
mally defined as a value function

Vγ,π(s) = EAt∼π(St,·)

[∞∑
t=0

γtRt

∣∣∣∣∣ S0 = s

]
.

We also define an action-value function to be the value of
executing a given action and subsequently following some
policy π, i.e.,

Qγ,π(s, a) = ES1∼T (s,a,·) [R0 + γVγ,π(S1) | S0 = s,A0 = a] .

An optimal policy π∗ is a policy that achieves the optimal
value function V ∗γ = Vγ,π∗ that satisfy V ∗γ (s) ≥ Vγ,π(s) for
all states and policies. V ∗γ satisfies Bellman’s equation:

V ∗γ (s) = max
a∈A

Q∗γ(s, a) ∀s ∈ S, (1)

whereQ∗γ = Qγ,π∗ is referred to as the optimal action-value
function.

Finally, we can define a policy by mapping action-values
in each state to a probability distribution over actions. For
example, using SOFTMAX gives us

π(s, a) =
eQ(s,a)/τ∑

a′∈A e
Q(s,a′)/τ

,

where τ ≥ 0 is a temperature that controls the greediness of
the policy. It returns a greedy policy arg maxaQ(s, a) when
τ = 0; and approaches a uniform policy when τ →∞.

2.3 Formulating Classical Planning as an MDP
There are two typical ways to formulate a classical plan-
ning problem as an MDP. In one strategy, for any transition
(s, a, s′), we assign a reward of 1 when s′ ∈ G, and 0 other-
wise. In the other, we assign a reward of 0 when s ∈ G, and
−1 otherwise (or, more generally −COST(a) in a non-unit-
cost domain). In this paper we use the second, negative-
reward model because it tends to induce more effective ex-
ploration in RL. Both cases are considered sparse reward

problems because there is no information about whether one
action sequence is better than another until a goal state is
reached.

3 Bridging Deep RL and AI Planning

We consider a multitask learning setting with a training time
and a test time (Fern, Khardon, and Tadepalli 2011). During
training, classical planning problems from a single domain
are available. At test time, methods are evaluated on held-
out problems from the same domain. The transition model
(in PDDL form) is known at both training and test time.

Learning to improve planning has been considered in RL.
For example, in AlphaGo (Silver et al. 2016), a value func-
tion was learned to provide heuristic guidance to Monte
Carlo Tree Search (Kocsis and Szepesvári 2006). Apply-
ing RL techniques in our classical planning setting, however,
presents unique challenges.

(P1): Preconditions and dead-ends. In MDPs, a fail-
ure to perform an action (e.g., due to unsatisfied precon-
ditions) is typically handled as a self-cycle to the current
state in order to guarantee that the state transition probability
T is well-defined for all states. Alternative formulations of
preconditions in MDPs include one that augments the state
space with an absorbing state with a highly negative reward.

(P2): Objective functions. Classical planning tries to
minimize the sum of costs along trajectories, while the RL
and the MDP frameworks may try to maximize the expected
cumulative discounted rewards of trajectories. While the
MDP framework does not necessarily assume discounting,
the majority of RL applications use the discounted formula-
tion (Schulman et al. 2015; Mnih et al. 2015, 2016; Lillicrap
et al. 2016). Moreover, while costs could be treated as nega-
tive rewards in MDPs, discounting is unnatural in typical ap-
plications of AI Planning. Unlike those of modern RL where
the target is the survival of an agent in a stochastic environ-
ment, applications of AI Planning are mainly cost minimiza-
tion and pathfinding problems in fixed-budget scenarios with
deterministic, fully-observable environments, where delay-
ing a costly action does not benefit the agent.

(P3): Input representations. While much of the deep RL
literature assumes an unstructured (e.g., images in Atari) or
a factored input representation (e.g., location and velocity
in cartpole), classical planning deals with structured inputs
based on FOL to perform domain- and problem-independent
planning. This is problematic for typical neural networks,
which assume a fixed-sized input. Recently, several net-
work architectures were proposed to achieve invariance to
the size and the ordering, i.e., neural networks for a set-like
input representation (Ravanbakhsh, Schneider, and Poczos
2016; Zaheer et al. 2017). Graph Neural Networks (Battaglia
et al. 2018) have also been recently used to encode FOL in-
puts (Rivlin, Hazan, and Karpas 2020; Shen, Trevizan, and
Thiébaux 2020; Ma et al. 2020). While the choice of the ar-
chitecture is arbitrary, our network should be able to handle
FOL inputs.

4 Value Iteration for Classical Planning
Our main approach will be to learn a value function that can
be used as a heuristic to guide planning. In our multitask set-
ting, where goals vary between problem instances, we wish
to learn a single goal-parameterized value function that gen-
eralizes across problems (Schaul et al. 2015). We omit the
goal for notational concision in this discussion, but note that
all of our value functions are goal-parameterized.

To learn estimated value functions, we build on the value
iteration algorithm, where a known model of the dynam-
ics is used to incrementally update estimates of the optimal
value function and a corresponding optimal policy. In this
section, we begin with a review of value iteration and de-
scribe a number of important details for scaling to problems
with large state and action spaces. We then describe modifi-
cations to the generic method for application in our classical
planning setting.

4.1 Backgrounds
Value iteration incrementally updates estimates of the opti-
mal value function V ∗γ by updating its current estimates with
the r.h.s. of Eq. 1 until a fixpoint:

1: while not converged do
2: for s ∈ S do
3: Vγ,π(s)← maxa∈AQγ,π(s, a). (Bellman Update)

where Vγ,π and Qγ,π correspond to the estimated state and
action values. In domains with small state spaces, the esti-
mated value function can be represented with a table. In the
classical planning domains that we consider in this work,
state spaces are typically far too large for tables. The state
spaces are so large, in fact, that enumerating states in an in-
ner loop (Line 2) is impractical.

Real Time Dynamic Programming (RTDP) avoids the ex-
haustive enumeration of states in value iteration by sam-
pling a subset of the state space based on the current policy.
RTDP is a subclass of Asynchronous Dynamic Program-
ming algorithm (Sutton and Barto 2018), which do not re-
quire every state to be updated after each iteration of the
outer loop. RTDP can be summarized with the following
pseudo-code:

1: while not converged do
2: s ∼ q0, t← 0
3: while t < D and s is a non-terminal state do
4: a← arg maxaQγ,π(s, a)
5: s← T ′(s, a)
6: Vγ,π(s)← maxa∈AQγ,π(s, a). (Bellman Update)
7: t← t+ 1

In this work, we use on-policy RTDP, which replaces the
second maxa with Ea for the current policy defined by the
SOFTMAX of the current action-value estimates. On-policy
methods are known to be more stable but can sometimes
lead to slower convergence.

The other issue presented by large state spaces is that
value estimates cannot be stored in an exhaustive table. We
avoid this issue by encoding Vγ,π using a neural network and
applying the Bellman updates approximately. A single Bell-
man update is equivalent to a single Gradient Ascent step
and can be made differentiable so that it is compatible with

neural networks. Let ∆Vγ,π(s) be the amount of the update
made by a Bellman update. By substituting x = Vγ,π(s) and
treating maxa∈AQγ,π(s, a) as a constant C,

∆Vγ,π(s) = max
a∈A

Qγ,π(s, a)− Vγ,π(s) = C − x.

Notice thatC−x = ∂
∂x (− 1

2)(x−C)2. Therefore, a Bellman
update is ascending a partial gradient of the maximization
objective with regard to Vγ,π(s):

−1

2

(
Vγ,π(s)−max

a∈A
Qγ,π(s, a)

)2

.

This way of treating C as a constant is called semi-gradient
or bootstrapping (Sutton and Barto 2018). In an implemen-
tation of V based on neural network libraries such as Ten-
sorflow, we can simply pass a negation of this objective to a
gradient-descent optimizer to implicitly perform an update
in a “table” approximated by a neural network. It is impor-
tant to stop the gradient for maxa∈AQγ,π(s, a), which treats
it as a constant during differentiation.

We use experience replay to help smooth out changes in
the policy and reduce the correlation between updated states.
We store the history of states into a large FIFO bufferB, and
update using mini-batches sampled from the replay buffer in
order to make use of efficient GPU-based parallelism. This
technique has long been used to stabilize and accelerate neu-
ral net based RL methods (Lin 1993) and was popularized by
Deep Q-learning (Mnih et al. 2015).

4.2 Modified RTDP for Classical Planning
We modify the training algorithm to address the assump-
tions (P1) in classical planning. First, since larger prob-
lem instances typically require more steps to solve, states
from these problems are likely to dominate the replay buffer.
This can make updates to states from smaller problems rare,
which can lead to catastrophic forgetting. To address this, we
separate the buffer into buckets, where states in one bucket
are from problem instances with the same number of objects.
When we sample a mini-batch, we randomly select a bucket
and randomly select states from this bucket. This is also a
requirement in the light of implementation since the input
shape must be at least the same within a single mini-batch.

Next, instead of terminating the inner loop and sampling
the initial state in the same state space, we select a new train-
ing instance and start from its initial state. Accordingly, we
redefine q0 to be a distribution of problem instances.

Third, since arg maxa in RTDP is not possible at a
state with no applicable actions (a.k.a. deadlock), the agent
should reset the environment upon entering such a state. We
also select actions only from applicable actions and do not
treat an inapplicable action as a self-cycle. Indeed, train-
ing a value function along a trajectory that includes such a
self-cycle has no benefit because the test-time agent (GBFS)
never attempts to execute them. These modifications result
in a variant of RTDP as follows:

1: Buffer B ← [∅, ∅, ∅, . . .]
2: while not converged do
3: 〈P,A,O, I,G〉 ∼ q0, t← 0, s← I ,

4: while t < D, s 6∈ G, s is not a deadlock do
5: a← arg maxa∈{a|PRE(a)⊆s}Qγ,π(s, a)

6: s← T ′(s, a)
7: B[|O|].push(s)

8: SGD(12 (Vγ,π(s)− Ea∈AQγ,π(s, a))
2
, B)

9: t← t+ 1

5 Planning Heuristics as Dense Rewards
The fundamental difficulty of applying RL-based ap-
proaches to classical planning is the lack of dense reward to
guide exploration. We address this by combining heuristic
functions (e.g., hFF, hadd) with a technique called potential-
based reward shaping. To correctly perform this technique,
we should take care of (P2) the difference between the dis-
counted and non-discounted objectives.

Reward shaping (Ng, Harada, and Russell 1999) is a tech-
nique that helps the training of RL algorithms by modifying
the reward function r. Formally, with a potential function
φ : S → R, a function of states, we define a shaped reward
function on transitions, r̂ : S ×A× S → R, as follows:

r̂(s, a, s′) = r(s, a, s′) + γφ(s′)− φ(s). (2)

Under some mild assumptions, any function can be used
as a potential function without affecting the optimal policies
under the original reward function (Ng, Harada, and Russell
1999). Furthermore, the optimal value function V̂ ∗γ of the
modified MDP M̂ = (S,A, T, r̂, q0) satisfies

V ∗γ (s) = V̂ ∗γ (s) + φ(s). (3)

In other words, an agent trained in M̂ is learning the off-
set of the original optimal value function from the potential
function. The potential function thus acts as prior knowledge
about the environment, which initializes the value function
(Wiewiora 2003).

Building on these theoretical backgrounds, we propose to
leverage existing domain-independent heuristics to define a
potential function that guides the agent while it learns to
solve a given domain. A naive approach that implements
this idea is to define φ(s) = −h(s). The h value is negated
because the MDP formulation seeks to maximize reward
and h is an estimate of cost to go, which should be min-
imized. Note that the agent receives an additional reward
when γφ(s′) − φ(s) is positive (Eq. 2). When φ = −h,
this means that the improvement of the heuristic value is
treated as a reward signal. Effectively, this allows us to use
a domain-independent planning heuristic to generate dense
rewards that aid in the RL algorithm’s exploration.

However, this straightforward implementation has two is-
sues: (1) First, when the problem contains a dead-end, the
function may return∞, i.e., h : S → R+0 ∪ {∞}. In such
cases, gradient-based optimization no longer works due to
numerical issues. (2) Second, the value function still requires
a correction even if h is the “perfect” oracle heuristic h∗.
Recall that V ∗γ is the optimal discounted value function with
−1 rewards per step. Given an optimal unit-cost cost-to-go
h∗(s) of a state s, the discounted value function and the non-

discounted cost-to-go can be associated as follows:

V ∗γ (s) =

h∗(s)∑
t=1

γt · (−1) = −1− γh∗(s)

1− γ
6= −h∗(s). (4)

This indicates that the amount of correction learned (i.e.,
V̂ ∗γ (s) = V ∗γ (s) − φ(s)) is not zero even in an ideal sce-
nario of φ = −h = −h∗. This issue is a direct consequence
of not properly accounting for discounting.

To address these issues, we propose to use the discounted
value of the heuristic function as a potential function. Recall
that a heuristic function h(s) is an estimate of the cost-to-go
from the current state s to a goal. Since h(s) does not pro-
vide a concrete idea of how to achieve a goal, we tend to
treat the value as an opaque number. An important realiza-
tion, however, is that it nevertheless represents a sequence of
actions; thus its value can be decomposed into a sum of ac-
tion costs. In unit-cost domains, we regard a heuristic value
h(s) as a non-discounted cost-to-go, and thus define a cor-
responding discounted heuristic function hγ(s) as:

h(s) =

h(s)∑
t=1

1, hγ(s) =

h(s)∑
t=1

γt · 1 =
1− γh(s)

1− γ
. (5)

Notice that φ = −hγ = −h∗γ results in V̂ ∗γ (s) = 0. This is
also beneficial from the practical standpoint: The weights of
neural networks, including those used for representing V̂γ ,
are typically randomly initialized so that the expected value
of the output is zero (Glorot and Bengio 2010). Also, the
resulting function is bounded by 0 ≤ hγ(s) ≤ 1/(1 − γ),
avoiding issues resulting from infinite heuristic values.

6 Value-function Generalized over Size
To achieve the goal of learning domain-dependent heuristics
specialized over the tasks of the same domain, the neural
value function used in the reward-shaping framework dis-
cussed above must be invariant to the number and the or-
der of propositions and objects in a PDDL definition (point
(P3)). To address this issue, we propose the use of Neural
Logic Machine (Dong et al. 2019, NLM), an architecture
originally designed for a supervised learning task over FOL
inputs. We first discuss Multi-Arity Predicate Representa-
tion (MAPR), an array-based representation of grounded
FOL inputs that NLM uses.

6.1 Multi-Arity Predicate Representation
Assume that we need to represent FOL statements combin-
ing predicates of different arities. We denote a set of predi-
cates of arity n as P/n (Prolog notation), its propositions as
P/n(O), and the Boolean tensor representation of P/n(O)
as z/n ∈ BOn×|P/n|. A MAPR is a tuple of N tensors
z = (z/1, . . . ,z/N) whereN is the largest arity. For exam-
ple, when we have objects a, b, c and four binary predicates
on, connected, above and larger, we enumerate all combi-
nations on(a,a), on(a,b) ... larger(c,c), resulting in an array
z/2 ∈ B3×3×4. Similarly, we may have z/1 ∈ B3×2 for 2
unary predicates, and z/3 ∈ B3×3×3×5 for 5 ternary predi-
cates.

6.2 Neural Logic Machines
The NLM (Dong et al. 2019) is a neural Inductive Logic Pro-
gramming (ILP) (Muggleton 1991) system based on FOL
and the Closed-World Assumption (Reiter 1981). NLM rep-
resents a set of continuous relaxations of Horn rules as a set
of weights in a neural network and is able to infer the truth-
fulness of some target formulae as a probability. For exam-
ple, in Blocksworld, based on an input such as on(a, b) for
blocks a, b, NLMs may be trained to predict clear(b) is true
by learning a quantified formula ¬∃x; on(x, b).

NLM takes a boolean MAPR of propositional groundings
of FOL statements. NLM is designed to learn a class of FOL
rules with the following set of restrictions: Every rule is a
Horn rule, no rule contains function terms (such as a func-
tion that returns an object), there is no recursion, and all rules
are applied between neighboring arities. Due to the lack of
recursion, the set of rules can be stratified into layers. Let
Pk be a set of intermediate conclusions in the k-th stratum.
Under these assumptions, the following set of rules are suf-
ficient for representing any rules (Dong et al. 2019):

(expand) ∀x#pk ; pk(X;x#pk)← pk(X),

(reduce) pk(X)← ∃x#pk ; pk(X;x#pk),

(compose) pk+1(X)←

F

(⋃
π

((
Pk ∪ Pk ∪ Pk)/#pk+1

)
(π(X))

))
.

Here, pk, pk, pk, pk+1 ∈ Pk, Pk, Pk, Pk+1 (respectively) are
predicates, X = (x1, . . .) is a sequence of parameters, and
F(T) is a formula consisting of logical operations {∧,∨,¬}
and terms T . Intermediate predicates pk and pk have one less
/ one more parameters than pk, e.g., when #pk = 3, #pk = 4
and #pk = 2. (Pk ∪ Pk ∪ Pk)/#pk+1 extracts the predicates
whose arity is the same as that of pk+1. π(X) is a permuta-
tion of X , and

⋃
π iterates over π to generate propositional

groundings with various argument orders. F(·) represents
a formula that combines a subset of these propositions. By
chaining these set of rules from Pk to Pk+1 for a sufficient
number of times (e.g., from P1 to P5), it is able to represent
any FOL Horn rules without recursions (Dong et al. 2019).

All three operations (expand, reduce, and compose) can
be implemented as tensor operations over MAPRs (Fig. 1).
Given a binary tensor z/n of shape On × |P/n|, expand
copies the n-th axis to n + 1-th axis resulting in a shape
On+1×|P/n|, and reduce takes the max of n-th axis result-
ing in a shape On−1×|P/n|. The reduce operation can also
use min, in which case ∃ becomes ∀.

Finally, the COMPOSE operation combines the informa-
tion between the neighboring tensors z/n, z/n−1, z/n+1. In
order to use the information in the neighboring arities (P , P
and P), the input concatenates z/n with EXPAND(z/n−1)
and REDUCE(z/n+1), resulting in a shape On × C where
C = |P/n| + |P/n−1| + |P/n+1|. Next, a PERM function
enumerates and concatenates the results of permuting the
first n axes in the tensor, resulting in a shape On × (!n ·C).
It then applies a n-D pointwise convolutional filter fn with
Q output features, resulting in On×Q, i.e., applying a fully

aa ab ac
ba bb bc

cc

z/2

z/1

z/0
expand

{
{

{
reduce

(horizontal copying)

a b c

(vertical max)

a b c
a
b
c

aa ab ac
ba bb bc
ca cb cc aa

ab
ac

ba
bb
bc

ca
cb
cc

Perm

aa

ac

ca

cc3x3x4
(O=3,|P/2|=4) 3x3x(!2・4)

fc x 9
pointwise conv

(shared weight)
output

(!2 output)

ab

a b c

a
b
c

a b c

Figure 1: (Left) EXPAND and REDUCE operations performed
on a boolean MAPR containing nullary, unary, and bi-
nary predicates and three objects, a, b, and c. Each white
/ black square represents a boolean value (true / false).
(Right) PERM tensor operation performed on binary pred-
icates. They are generated by performing the same opera-
tions shown on the left side of the figure on z/1, z/2, and
z/3. Each predicate is represented as a matrix. For a ma-
trix, PERM is equivalent to concatenating the matrix with its
transposition. When PERM is applied to ternary predicates,
it concatenates !3 = 6 tensors. After PERM, a single, shared
fully-connected layer is applied to each combination of ar-
guments (such an operation is sometimes called a pointwise
convolution).

connected layer to each vector of length !n ·C while sharing
the weights. It is activated by any nonlinearity σ to obtain
the final result, which we denote as COMPOSE(z, n,Q, σ).
Formally, ∀j ∈ 1..n,∀oj ∈ 1..O,

Π(z) = PERM
(

EXPAND(z/n−1); z/n; REDUCE(z/n+1)
)
,

COMPOSE(z, n,Q, σ)o1···on = σ(fn(Π(z)o1···on)) ∈ RQ.
An NLM contains N (the maximum arity) COM-

POSE operation for the neighboring arities, with appro-
priately omitting both ends (0 and N + 1) from the
concatenation. We denote the result as NLMQ,σ(z) =
(COMPOSE(z, 1, Q, σ), · · · , COMPOSE(z, N,Q, σ)). These
horizontal arity-wise compositions can be layered vertically,
allowing the composition of predicates whose arities differ
more than 1 (e.g., two layers of NLM can combine unary
and quaternary predicates). Since fn is applied in a convolu-
tional manner over On object tuples, the number of weights
in an NLM layer does not depend on the number of objects
in the input. However, it is still affected by the number of
predicates in the input, which alters C.

6.3 Value Functions as Neural Logic Machines
The network that represents a value function consists of
NLM layers. When the predicates in the input PDDL do-
main have a maximum arity N , we specify the maximum
intermediate arity M and the depth of NLM layers L as a
hyperparameter. The intermediate NLM layers expand the
arity up to M using EXPAND operation, and shrink the arity
near the output because the value function is a scalar (arity
0). For example, with N = 2, M = 3, L = 7, the arity of
each layer follows (2, 3, 3, 3, 2, 1, 0). Higher arities are not
necessary near the output because the information in each
layer propagates only to the neighboring arities. Since each
expand/reduce operation only increments/decrements the ar-
ity by one, L,N,M must satisfy N ≤M ≤ L.

Intermediate layers have a sigmoid activation function,
while the output is linear, since we use its raw value as the
predicted correction to the heuristic function. In addition,
we implement NLM with a skip connection that was pop-
ularized in ResNet image classification network (He et al.
2016): The input of l-th layer is a concatenation of the out-
puts of all previous layers. Due to the direct connections be-
tween the layers in various depths, the layers near the input
receive more gradient information from the output, prevent-
ing the gradient vanishing problem in deep neural networks.
In the experiments, we typically use L = 4 or L = 6 layers.

7 Searching with a Learned Value Function
Finally, we describe the test-time agent based on greedy best
first search (GBFS) (Hoffmann and Nebel 2001). Since the
learned value function V̂γ(s) is a correction to the potential
function (Eq. 3), the true value function which represents a
discounted cumulative expected reward is

Vγ(s) = V̂γ(s) + (−hγ(s)). (6)

Since GBFS deals with costs rather than rewards, our
“heuristic function” is −Vγ(s) = hγ(s)− V̂γ(s).

Practically speaking, we could use this−Vγ(s) directly as
a heuristic function in GBFS. However, this “heuristic func-
tion” is theoretically unappealing, especially if we consider
using it in algorithms such as Weighted A∗ (Pohl 1973). Re-
call that −Vγ(s) is an approximation of optimal discounted
cumulative cost. Due to its discounted nature, it is hard to
justify adding its value to other distance-based metrics such
as g-values in Weighted A∗, which are not discounted. To
address this issue, we propose the following undiscount op-
eration, which obtains an undiscounted heuristic value from
a discounted value function:

Vγ(s) = −1− γh(s)

1− γ
(7)

∴ h(s) = logγ ((1− γ)Vγ(s) + 1) ∈ R. (8)

The idea behind this transformation is to smoothly interpo-
late a step-wise summation

∑h(s)
t=1 γ

t · (−1) as if h(s) is a
continuous value.

Unfortunately, this operation is valid only in a unit-cost
domain. Also, in GBFS we evaluate later, whether using
−Vγ(s) or h(s) does not affect the order of expansions be-
cause this operation is monotonic. Future work includes ex-
tending this formulation to a non-unit cost domain and eval-
uating it in Weighted A∗.

8 Experimental Evaluation
All experiments are performed on a distributed compute
cluster equipped with Xeon E5-2600 v4 and Tesla K80,
which is three generations older than the flagship accel-
erators at the time of writing. Our implementation com-
bines the jax auto-differentiation framework for neural net-
works (Bradbury et al. 2018), the PDDLGym library (Silver
and Chitnis 2020) for parsing, and pyperplan to obtain
the heuristic value of hFF and hadd. The resulting program
supports pure STRIPS with unit-cost actions. We verified

that this program works on 25 domains from past IPCs with-
out raising errors by removing :action-cost specifica-
tions from the domain files. We include the list of domains
in the appendix (Sec. A.3).

While our program is compatible with this wide range of
domains, we focus on extensively testing a selected subset
of domains with a large enough number of independently
trained models (20), to feel confident in comparing the re-
sults, due to the fact that RL algorithms tend to have a
large amount of variance in their outcomes (Henderson et al.
2018), induced by sensitivity to initialization, randomization
in exploration, and randomization in experience replay.

Our objective is to see whether the our RL agent can
improve the efficiency of GBFS, over a standard domain-
independent heuristic, measured in terms of the number of
node-evaluations performed during the search. In addition,
we place an emphasis on generalization ability: we hope that
by using NLMs to represent the value function, we will be
able to generalize from training on problem instances with
a small number of objects (which makes computation time
more feasible) to executing on domains with much larger
numbers of objects.

We trained our system on five classical planning do-
mains used in (Rivlin, Hazan, and Karpas 2020): 4-ops
blocksworld, ferry, gripper, logistics, satellite, as well as three
more domains from past IPCs, miconic, parking, visitall, that
are supported by our implementation. In all domains, we
generated a number of problem instances with parameter-
ized generators used in the past IPCs 1. Table 2 in the ap-
pendix shows the list of parameters given to the generator.
For each domain, we provided from 195 to 500 instances
for training, and from 250 to 700 instances for testing. Each
agent is trained for 50000 steps, which takes about 4 to 6
hours. The list of remaining hyperparameters are available
on the appendix (Sec. A.2).

After the training, we ran a GBFS-based planner which
uses the learned heuristics on the test instances. We limited
the maximum node evaluations to 100000 without applying
a time limit or a memory limit. Let us denote the baseline
GBFS with heuristics h ∈

{
hblind, hFF, hadd

}
as GBFS(h).

We denote a heuristic function obtained by training an RL
agent with reward shaping φ = −hγ with a capital letter,
e.g., HFF is a heuristic function obtained by hFF

γ -based re-
ward shaping.

In this experiment, we aim to answer the following ques-
tions: (Q1) Do our RL agents learn heuristic functions at
all, i.e., GBFS(hblind) < GBFS(Hblind)? (Q2.1) Do our RL
agents with reward shaping outperform our RL agents with-
out shaping, i.e., GBFS(Hblind) < GBFS(HFF)? (Q2.2) Can
they improve the performance over the baseline heuristics
it was initialized to, i.e., GBFS(hFF) < GBFS(HFF)? (Q3)
Does the heuristics obtained by our framework maintain its
improvement in larger problem instances, i.e., is it general-
ized over the number of objects? (Q4) Can the improvement
be explained by accelerated exploration?

We compared the node evaluations between the
baseline (hblind, hFF, hadd) and the learned heuristics

1github.com/AI-Planning/pddl-generators

(Hblind, HFF, Hadd) for instances solved by either one. Fig. 2
answers the first question (Q1). We compared the result of
GBFS(hblind) and GBFS(Hblind), i.e., Breadth-first search,
which is equivalent to GBFS with blind heuristics (heuristic
value is constantly 0), against GBFS with a heuristic func-
tion without reward shaping. The aim of this experiment
is to test if a baseline RL (without reward shaping) learns
a useful heuristic function at all. The result was positive:
Aside from visitall and miconic, Breadths-first search failed
to solve any instance in the test set we provided, while a
GBFS using the learned heuristics managed to solve some
instances depending on the domain.

We next similarly compare the node evaluations between
GBFS(hFF) and GBFS(HFF), as well as GBFS(hadd) and
GBFS(Hadd) (Q2.2). The plot suggests that the reward-
shaping-based training has successfully improved upon the
baseline heuristics. However, the effect is negative or neutral
on gripper and logistics where heuristics are presumably al-
ready accurate. In such cases, there is little room to improve
upon the baseline, and thus the high randomness in the rein-
forcement learning may potentially harm the performance.

To show the effectiveness of NLM in generalizing the pol-
icy with regard to the number of objects in the environment
(Q3), we checked the improvements with regard to the prob-
lem size. Fig. 2 (Right) plots the number of objects in the
x-axis and the ratio of success over problem instances in the
y-axis. It shows that the heuristic accuracy is improved in
instances whose size far exceeds the training instances for
hblind, hFF, hadd. Due to space, full results covering the eight
domains tested are included in the appendix.

Fig. 2 also answers (Q2.1): GBFS(HFF) and GBFS(Hadd)
outperforms GBFS(Hblind). The plots seem to suggest that
the performance of the base heuristics used for reward shap-
ing affects the quality of resulting learned heuristics. This
matches the theoretical expectation that the potential func-
tion is a domain knowledge that initializes the policy.

Finally, we evaluated the effect of reward shaping on the
exploration during the training (Q4). Table 1 shows the to-
tal number of goals reached by the agent, which indicates
that reward shaping indeed helps the agent reach goals more
often. (See Appendix Fig. 4-5 for cumulative plots.)

9 Related Work
Approaches that try to improve classical planning perfor-
mance through learning has been primarily focused on
learning domain control knowledge including macro ac-
tions (Korf 1985; Coles and Smith 2004; Botea et al. 2005;
Garcı́a-Durán, Fernández, and Borrajo 2006; Newton et al.
2007; Jonsson 2007; Asai and Fukunaga 2015; Chrpa and
Siddiqui 2015), HTN methods (Nejati, Langley, and Konik
2006; Hogg, Muñoz-Avila, and Kuter 2008; Hogg, Kuter,
and Munoz-Avila 2010), temporal rules (Bacchus and Ka-
banza 2000), as well as and portfolio optimization (Cen-
amor, de la Rosa, and Fernández 2014; Sievers et al. 2019).

Early attempts to learn heuristic functions include ap-
plying shallow, fully connected neural networks to puzzle
domains (Arfaee, Zilles, and Holte 2010, 2011), its on-
line version (Thayer, Dionne, and Ruml 2011), combining
SVMs (Cortes and Vapnik 1995) and NNs (Satzger and

102

103

104

105

102 103 104 105

blocks

blind
hadd
hff

102

103

104

105

102 103 104 105

ferry

blind
hadd
hff

102

103

104

105

102 103 104 105

gripper

blind
hadd
hff

102

103

104

105

102 103 104 105

logistics

blind
hadd
hff

102

103

104

105

102 103 104 105

satellite

blind
hadd
hff 102

103

104

105

102 103 104 105

miconic

blind
hadd
hff 102

103

104

105

102 103 104 105

parking

blind
hadd
hff

102

103

104

105

102 103 104 105

visitall

blind
hadd
hff

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50 55

%
 o

f
fa

il
ed

 in
st

an
ce

s

Number of objects

blocks, threshold = 100000

hblind

hadd

hff

Hblind

Hadd

Hff

Figure 2: (Left) Scatter plot showing the number of node evaluations on 8 domains, where x-axis is for GBFS with
hblind, hFF, hadd and y-axis is for Hblind, HFF, Hadd. Each point corresponds to a single test problem instance. For the learned
heuristics, results of 20 seeds are plotted against a single baseline. Failed instances are plotted on the border. Points below the
diagonal indicate the instances which were improved by reinforcement learning. In addition, red circles highlight the best seed
from HFF whose sum of evaluations across instances is the smallest. (Right) The rate of successfully finding a solution for a
set of problems (y-axis) with a given number of objects (x-axis). Full results are available in the appendix.

domain hblind hadd hFF

blocks 4691 ± 100 4808 ± 90 5089 ± 70
ferry 4981 ± 178 5598 ± 45 5530 ± 68
gripper 2456 ± 185 3856 ± 39 3482 ± 122
logistics 3475 ± 214 5059 ± 151 5046 ± 131
miconic 3568 ± 25 3794 ± 21 3808 ± 24
parking 3469 ± 496 4763 ± 78 4716 ± 54
satellite 3292 ± 195 4388 ± 78 4387 ± 52
visitall 1512 ± 88 1360 ± 73 2063 ± 51

Table 1: The cumulative number of goal states the RTDP has
reached during training. The numbers are average and stan-
dard deviation over 20 seeds. Best heuristics are highlighted
in bold. In logistics, miconic, parking, and satellite, we high-
light both hadd and hFF because the difference between hadd

and hFF are not statistically significant under Wilcoxon’s
rank-sum test (p = 0.37, 0.02, 0.007, 0.43), while both sig-
nificantly outperforms hblind (p < 0.0005).

Kramer 2013), learning a residual from planning heuris-
tics similar to ours (Yoon, Fern, and Givan 2006, 2008),
or a relative ranking between states instead of absolute val-
ues (Garrett, Kaelbling, and Lozano-Pérez 2016). Ferber,
Helmert, and Hoffmann (2020) tested fully-connected lay-
ers in modern frameworks. ASNet (Toyer et al. 2018) learns
domain-dependent heuristics using a network that is similar
to Graph Neural Networks (GNN) (Battaglia et al. 2018).
STRIPS-HGN (Shen, Trevizan, and Thiébaux 2020) learns
domain-independent heuristics using hypergraph networks
which generalizes GNN and is capable of encoding delete-
relaxation. Their disadvantage is their supervised nature,
which requires optimal costs of each state in the dataset.

Grounds and Kudenko (2005) combined reinforcement
learning and STRIPS planning with reward shaping, but

their setting is different from our scenario: They treat a 2D
navigation problem as a two-tier hierarchical planning prob-
lem where unmodified FF (Hoffmann and Nebel 2001) or
Fast Downward (Helmert 2006) are used as high-level plan-
ner, then their plans are used to shape the rewards for the
low-level RL agent. Unlike their approach, our study focuses
on training an RL agent for solving the high-level PDDL
task. The separate low-level task as considered by their pa-
per does not exist in our scenario.

Rivlin, Hazan, and Karpas (2020) implements an RL
agent based on Proximal Policy Optimization (Schulman
et al. 2017) which represents its policy function as a Graph
Neural Networks (Scarselli et al. 2009, GNNs). While their
method includes a technique to derive a value function from
a policy function, they modify it in an ad-hoc manner with
an entropy to use it as a heuristic function for GBFS.

10 Conclusion
In this paper, we proposed a domain-independent rein-
forcement learning framework for learning domain-specific
heuristic functions. Unlike existing work on applying policy
gradient to planning (Rivlin, Hazan, and Karpas 2020), we
based our algorithm on value iteration whose training results
become a proper heuristic function whose unit of measure is
a usual, non-discounted cost in planning. We addressed the
difficulty of training an RL agent with sparse rewards using
a novel reward-shaping technique which leverages existing
heuristics developed in the literature. We showed that our
framework not only learns a heuristic function from scratch,
but also learns better if aided by heuristic functions (reward
shaping). Furthermore, the learned heuristics keeps outper-
forming the baseline over a wide range of problem sizes,
demonstrating its generalization over the number of objects
in the environment.

References
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2010. Bootstrap Learn-
ing of Heuristic Functions. In Felner, A.; and Sturtevant, N. R.,
eds., Proc. of Annual Symposium on Combinatorial Search.
AAAI Press.

Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning Heuris-
tic Functions for Large State Spaces. Artificial Intelligence
175(16-17): 2075–2098. doi:10.1016/j.artint.2011.08.001.

Asai, M.; and Fukunaga, A. 2015. Solving Large-Scale Plan-
ning Problems by Decomposition and Macro Generation. In
Proc. of the International Conference on Automated Planning
and Scheduling (ICAPS). Jerusalem, Israel.

Bacchus, F.; and Kabanza, F. 2000. Using Temporal Logics
to Express Search Control Knowledge for Planning. Artificial
Intelligence 116(1): 123–191.

Bäckström, C.; and Klein, I. 1991. Planning in polynomial
time: the SAS-PUBS class. Computational Intelligence 7(3):
181–197.

Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.; Vitvit-
skyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57: Outper-
forming the Atari Human Benchmark. In Proc. of the Interna-
tional Conference on Machine Learning, 507–517. PMLR.

Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-Gonzalez,
A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.;
Santoro, A.; Faulkner, R.; et al. 2018. Relational inductive
biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261 .

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J. 2005.
Macro-FF: Improving AI Planning with Automatically Learned
Macro-Operators. J. Artif. Intell. Res.(JAIR) 24: 581–621.

Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary,
C.; Maclaurin, D.; Necula, G.; Paszke, A.; VanderPlas, J.;
Wanderman-Milne, S.; and Zhang, Q. 2018. JAX: composable
transformations of Python+NumPy programs.

Brafman, R. I.; and Domshlak, C. 2003. Structure and Com-
plexity in Planning with Unary Operators. J. Artif. Intell.
Res.(JAIR) 18: 315–349.

Bylander, T. 1994. The Computational Complexity of Proposi-
tional STRIPS Planning. Artificial Intelligence 69(1–2): 165–
204.

Cenamor, I.; de la Rosa, T.; and Fernández, F. 2014. IBACOP
and IBACOP2 planner. In Proc. of the International Planning
Competition.

Chrpa, L.; and Siddiqui, F. H. 2015. Exploiting Block Deorder-
ing for Improving Planners Efficiency. In Proc. of International
Joint Conference on Artificial Intelligence (IJCAI).

Coles, A.; and Smith, A. 2004. Marvin: Macro Actions from
Reduced Versions of the Instance. In Proc. of the Interna-
tional Planning Competition. Http://www.tzi.de/ edelkamp/ipc-
4/IPC-4.pdf.

Cortes, C.; and Vapnik, V. 1995. Support-Vector Networks. Ma-
chine learning 20(3): 273–297.

Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-Black
Planning: A New Systematic Approach to Partial Delete Relax-
ation. Artificial Intelligence 221: 73–114.

Dong, H.; Mao, J.; Lin, T.; Wang, C.; Li, L.; and Zhou, D. 2019.
Neural Logic Machines. In Proc. of the International Confer-
ence on Learning Representations.

Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, Decidability and Undecidability Results for Domain-
Independent Planning. Artificial Intelligence 76(1–2): 75–88.

Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Net-
work Heuristics for Classical Planning: A Study of Hyperpa-
rameter Space. In Proc. of European Conference on Artificial
Intelligence, 2346–2353.

Fern, A.; Khardon, R.; and Tadepalli, P. 2011. The first learn-
ing track of the international planning competition. Machine
Learning 84(1-2): 81–107.

Fikes, R. E.; and Nilsson, N. J. 1972. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem Solv-
ing. Artificial Intelligence 2(3): 189–208.

Garcı́a-Durán, R.; Fernández, F.; and Borrajo, D. 2006. Com-
bining Macro-operators with Control Knowledge. In Proc.
of International Conference on Inductive Logic Program-
ming (ILP). Santiago de Compostela, Spain. doi:10.1007/
978-3-540-73847-3
25.

Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016.
Learning to Rank for Synthesizing Planning Heuristics. In
Proc. of International Joint Conference on Artificial Intelli-
gence (IJCAI), 3089–3095.

Glorot, X.; and Bengio, Y. 2010. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of
the thirteenth international conference on artificial intelligence
and statistics, 249–256. JMLR Workshop and Conference Pro-
ceedings.

Grounds, M.; and Kudenko, D. 2005. Combining Reinforce-
ment Learning with Symbolic Planning. In Adaptive Agents and
Multi-Agent Systems III. Adaptation and Multi-Agent Learning,
75–86. Springer.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proc. of IEEE Conference
on Computer Vision and Pattern Recognition, 770–778.

Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res.(JAIR) 26: 191–246.

Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.;
and Meger, D. 2018. Deep reinforcement learning that mat-
ters. In Proc. of AAAI Conference on Artificial Intelligence,
volume 32.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. Intell.
Res.(JAIR) 14: 253–302. doi:10.1613/jair.855.

Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2010. Learning
Methods to Generate Good Plans: Integrating HTN Learning
and Reinforcement Learning. In Proc. of AAAI Conference on
Artificial Intelligence, volume 24.

Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with Minimal Additional Knowledge
Engineering Required. In Proc. of AAAI Conference on Artifi-
cial Intelligence.

Jonsson, A. 2007. The Role of Macros in Tractable Planning
over Causal Graphs. In Proc. of International Joint Conference
on Artificial Intelligence (IJCAI).

Jonsson, P.; and Bäckström, C. 1998a. State-Variable Planning
under Structural Restrictions: Algorithms and Complexity. Ar-
tificial Intelligence 100(1–2): 125–176.

Jonsson, P.; and Bäckström, C. 1998b. Tractable Plan Existence
Does Not Imply Tractable Plan Generation 22(3,4): 281–296.

Junghanns, A.; and Schaeffer, J. 2000. Sokoban: A Case-Study
in the Application of Domain Knowledge in General Search
Enhancements to Increase Efficiency in Single-Agent Search.
Artificial Intelligence .

Katz, M.; and Domshlak, C. 2008a. New Islands of Tractability
of Cost-Optimal Planning. J. Artif. Intell. Res.(JAIR) 32: 203–
288.

Katz, M.; and Domshlak, C. 2008b. Structural Patterns Heuris-
tics via Fork Decomposition. In Proc. of the International Con-
ference on Automated Planning and Scheduling (ICAPS), 182–
189.

Katz, M.; and Keyder, E. 2012. Structural Patterns Beyond
Forks: Extending the Complexity Boundaries of Classical Plan-
ning. In Proc. of AAAI Conference on Artificial Intelligence,
1779–1785.

Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-Relaxed
Plan Heuristics. In Proc. of the International Conference on
Automated Planning and Scheduling (ICAPS), 128–136.

Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-Carlo
Planning. 282–293. Springer.

Korf, R. E. 1985. Macro-Operators: A Weak Method for Learn-
ing. J. Artif. Intell. Res.(JAIR) 26(1): 35–77. doi:10.1016/
0004-3702(85)90012-8.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa,
Y.; Silver, D.; and Wierstra, D. 2016. Continuous Control with
Deep Reinforcement Learning. In Proc. of the International
Conference on Learning Representations.

Lin, L.-J. 1993. Reinforcement learning for robots using neural
networks. Technical report, Carnegie-Mellon Univ Pittsburgh
PA School of Computer Science.

Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020. Online
Planner Selection with Graph Neural Networks and Adaptive
Scheduling. In Proc. of AAAI Conference on Artificial Intelli-
gence, volume 34, 5077–5084.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In Proc.
of the International Conference on Machine Learning, 1928–
1937. PMLR.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-Level Control through Deep
Reinforcement Learning. Nature 518(7540): 529–533.

Muggleton, S. 1991. Inductive Logic Programming. New gen-
eration computing 8(4): 295–318.

Nejati, N.; Langley, P.; and Konik, T. 2006. Learning Hierarchi-
cal Task Networks by Observation. In Proc. of the International
Conference on Machine Learning.

Newton, M. H.; Levine, J.; Fox, M.; and Long, D. 2007. Learn-
ing Macro-Actions for Arbitrary Planners and Domains. In
Proc. of the International Conference on Automated Planning
and Scheduling (ICAPS).

Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invariance
under reward transformations: Theory and application to reward
shaping. In Proc. of the International Conference on Machine
Learning, volume 99, 278–287.

Pohl, I. 1973. The Avoidance of (Relative) Catastrophe, Heuris-
tic Competence, Genuine Dynamic Weighting and Computa-
tional Issues in Heuristic Problem Solving. In Proc. of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).

Ravanbakhsh, S.; Schneider, J.; and Poczos, B. 2016. Deep
Learning with Sets and Point Clouds. arXiv preprint
arXiv:1611.04500 .

Reiter, R. 1981. On Closed World Data Bases. In Readings in
Artificial Intelligence, 119–140. Elsevier.

Rivlin, O.; Hazan, T.; and Karpas, E. 2020. Generalized Plan-
ning With Deep Reinforcement Learning.

Satzger, B.; and Kramer, O. 2013. Goal Distance Estimation
for Automated Planning using Neural Networks and Support
Vector Machines. Natural Computing 12(1): 87–100. doi:10.
1007/s11047-012-9332-y.

Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The Graph Neural Network Model. IEEE
Transactions on Neural Networks 20(1): 61–80.

Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Univer-
sal value function approximators. In International conference
on machine learning, 1312–1320. PMLR.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz, P.
2015. Trust Region Policy Optimization. In Proc. of the Inter-
national Conference on Machine Learning, 1889–1897. PMLR.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv preprint arXiv:1707.06347 .

Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learn-
ing Domain-Independent Planning Heuristics with Hypergraph
Networks. In Proc. of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), volume 30, 574–584.

Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep Learning for Cost-Optimal Planning: Task-
Dependent Planner Selection. In Proc. of AAAI Conference on
Artificial Intelligence, volume 33, 7715–7723.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneer-
shelvam, V.; Lanctot, M.; et al. 2016. Mastering the Game
of Go with Deep Neural Networks and Tree Search. Nature
529(7587): 484–489.

Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ-
ments from PDDL Problems.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learning:
An Introduction. MIT press.

Thayer, J.; Dionne, A.; and Ruml, W. 2011. Learning Inadmis-
sible Heuristics during Search. In Proc. of the International
Conference on Automated Planning and Scheduling (ICAPS),
volume 21.

Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Ac-
tion Schema Networks: Generalised Policies with Deep Learn-
ing. In Proc. of AAAI Conference on Artificial Intelligence, vol-
ume 32.

Wiewiora, E. 2003. Potential-based shaping and Q-value initial-
ization are equivalent. J. Artif. Intell. Res.(JAIR) 19: 205–208.

Yoon, S.; Fern, A.; and Givan, R. 2008. Learning Control
Knowledge for Forward Search Planning. Journal of Machine
Learning Research 9(4).

Yoon, S. W.; Fern, A.; and Givan, R. 2006. Learning Heuristic
Functions from Relaxed Plans. In ICAPS, volume 2, 3.

Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.; Salakhut-
dinov, R. R.; and Smola, A. J. 2017. Deep Sets. In Advances in
Neural Information Processing Systems, 3391–3401.

A Appendix
A.1 Generator Parameters
Table 2 contains a list of parameters used to generate the training and testing instances. Since generators have a tendency to create an
identical instance especially in smaller parameters, we removed the duplicates by checking the md5 hash value of each file.

Domain Parameters |O|
blocks/train/ 2-6 blocks x 50 seeds 2-6
blocks/test/ 10,20,..,50 blocks x 50 seeds 10-50
ferry/train/ 2-6 locations x 2-6 cars x 50 seeds 4-7
ferry/test/ 10,15,...30 locations and cars x 50 seeds 20-60

gripper/train/ 2,4...,10 balls x 50 seeds (initial/goal locations are randomized) 6-14
gripper/test/ 20,40,...,60 balls x 50 seeds (initial/goal locations are randomized) 24-64

logistics/train/ 1-3 airplanes x 1-3 cities x 1-3 city size x 1-3 packages x 10 seeds 5-13
logistics/test/ 4-8 airplanes/cities/city size/packages x 50 seeds 32-96
satellite/train/ 1-3 satellites x 1-3 instruments x 1-3 modes x 1-3 targets x 1-3 observations 15-39
satellite/test/ 4-8 satellites/instruments/modes/targets/observations x 50 seeds 69-246

miconic/train/ 2-4 floors x 2-4 passengers x 50 seeds 8-12
miconic/test/ 10,20,30 floors x 10,20,30 passengers x 50 seeds 24-64
parking/train/ 2-6 curbs x 2-6 cars x 50 seeds 8-16
parking/test/ 10,15,..,25 curbs x 10,15,..25 cars x 50 seeds 24-54
visitall/train/ For n ∈ 3..5, nxn grids, 0.5 or 1.0 goal ratio, n blocked locations, 50 seeds 8-22
visitall/test/ For n ∈ 6..8, nxn grids, 0.5 or 1.0 goal ratio, n blocked locations, 50 seeds 32-58

Table 2: List of parameters used for generating the training and testing instances.

A.2 Hyperparameters
We trained our network with a following set of hyperparameters: Maximum episode length D = 40, Learning rate 0.001, discount
rate γ = 0.999999, maximum intermediate arity M = 3, number of layers L = 4 in satellite and logistics, while L = 6 in all other
domains, the number of features in each NLM layer Q = 8, batch size 25, temperature τ = 1.0 for a policy function (Sec. 2.2), and
the total number of SGD steps to 50000, which determines the length of the training. We used L = 4 for those two domains to address
GPU memory usage: Due to the size of the intermediate layerOn×(n! ·C), NLM sometimes requires a large amount of GPU memory.
Each training takes about 4 to 6 hours, depending on the domain.

A.3 Preliminary Results on Compatible Domains
We performed a preliminary test on a variety of IPC classical domains that are supported by our implementation. The following
domains worked without errors: barman-opt11-strips, blocks, depot, driverlog, elevators-opt11+sat11-strips, ferry, floortile-opt11-
strips, freecell, gripper, hanoi, logistics00, miconic, mystery, nomystery-opt11-strips, parking-opt11+sat11-strips, pegsol-opt11-
strips, pipesworld-notankage, pipesworld-tankage, rovers, satellite, scanalyzer-08-strips, sokoban-opt11-strips, tpp, transport-
opt11+sat08-strips, visitall-opt11-strips, zenotravel.

A.4 Full Results
Fig. 3 contains the full results of Fig. 2 (Right).

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50 55

%
 o

f
fa

il
ed

 in
st

an
ce

s

Number of objects

blocks, threshold = 100000

hblind

hadd

hff

Hblind

Hadd

Hff

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45 50 55 60 65

%
 o

f
fa

il
ed

 in
st

an
ce

s

Number of objects

ferry, threshold = 3000

hblind

hadd

hff

Hblind

Hadd

Hff

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 25 30 35 40 45 50 55 60 65

%
 o

f
fa

il
ed

 in
st

an
ce

s

Number of objects

gripper, threshold = 3000

hblind

hadd

hff

Hblind

Hadd

Hff

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

%
 o

f
fa

il
ed

 in
st

an
ce

s

Number of objects

logistics, threshold = 100000

hblind

hadd

hff

Hblind

Hadd

Hff

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 60 80 100 120 140 160 180 200 220 240 260

%
 o

f
fa

il
ed

 in
st

an
ce

s

Number of objects

satellite, threshold = 3000

hblind

hadd

hff

Hblind

Hadd

Hff

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 25 30 35 40 45 50 55 60 65

%
 o

f
fa

il
ed

 in
st

an
ce

s

Number of objects

miconic, threshold = 1000

hblind

hadd

hff

Hblind

Hadd

Hff

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 25 30 35 40 45

%
 o

f
fa

il
ed

 in
st

an
ce

s

Number of objects

parking, threshold = 3000

hblind

hadd

hff

Hblind

Hadd

Hff

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 35 40 45 50 55 60

%
 o

f
fa

il
ed

 in
st

an
ce

s

Number of objects

visitall, threshold = 1000

hblind

hadd

hff

Hblind

Hadd

Hff

Figure 3: The rate of successfully finding a solution (y-axis) for instances with a certain number of objects (x-axis). Learned
heuristic functions outperform their original baselines used for reward shaping in most domains. Since the initial maximum node
evaluation is too permissive, we manually set a threshold for the number of node evaluations for each domain and filtered the
instances when the node evaluation exceeded this threshold. This filtering emphasizes the difference because both the learned
and the baseline variants may have solved all instances.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-blocks-blind.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-blocks-hadd.pdf

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-blocks-hff.pdf

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-ferry-blind.pdf

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-ferry-hadd.pdf

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-ferry-hff.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-gripper-blind.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-gripper-hadd.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-gripper-hff.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-logistics-blind.pdf

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-logistics-hadd.pdf

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-logistics-hff.pdf

Figure 4: Cumulative number of instances that are solved during the training, where x-axis is the training step (part 1). Note
that this may include solving the same instance multiple times.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-miconic-blind.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-miconic-hadd.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-miconic-hff.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-parking-blind.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-parking-hadd.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-parking-hff.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-satellite-blind.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-satellite-hadd.pdf

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-satellite-hff.pdf

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-visitall-blind.pdf

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-visitall-hadd.pdf

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 g

oa
ls

 a
ch

ie
ve

d

Step t

cumulative-goals-visitall-hff.pdf

Figure 5: Cumulative number of instances that are solved during the training, where x-axis is the training step (part 2). Note
that this may include solving the same instance multiple times.

