
i
i

“paper_mit” — 2025/3/23 — 16:22 — page 1 — #1 i
i

i
i

i
i

1 Rationally Engineering Rational Robots

Leslie Pack Kaelbling and Tomás Lozano-Pérez

Engineered structure is critical for embodied intelligence

1.1 Introduction

Our ultimate goal is to design and build general-purpose robots with human-
level task and domain generality, including the ability to learn whole new
competencies online. We would like our robots to be able to do anything a
human can do, including serve as general household helpers, hospital aides, or
disaster relief workers.

Our particular focus is on the computer software that provides all of the
control and decision-making for the robot. A robot controller consumes a
stream of input signals from cameras, joint-angle sensors, microphones, etc.,
and produces a stream of output signals to control the robot’s joints, as well as
natural-language utterances to humans or signals to other robots.

The software has to enable a robot to live a long lifetime in a complex
world: it should be competent at performing the basic tasks of locomotion
and manipulation, be capable of taking instructions, and adapt to changes in
its environment, ranging from low-level calibration changes to human owners
with very different habits and requirements.

We are faced with two tightly intertwined driving questions:

1. How should this software be structured?
2. What process should we, as engineers, use to develop this software?

Answering these questions is an enormous challenge. We address them through
an engineering design approach, ultimately concluding that modularity, com-
positionality, and model-based run-time rationality are foundational design
principles that will enable an effective process for engineering generally
intelligent robots.

1.1.1 Engineering Intelligent Robots
Ultimately, we want our robots to perform well, on average, over all possible
situations in which they might find themselves, over a time horizon of days or



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 2 — #2 i
i

i
i

i
i

2 Chapter 1

weeks. We can express this formally by saying that we want to find a policy
π, in the form of a mapping of the history of all the inputs the robot has ever
received, as well as actions it has ever generated, into the next action to take,
that maximizes ∑

w∈W

V(π, w)P(w) .

This is the sum over all possible worlds w that the robot could encounter of
the value V of executing π in w. So, the engineering specification consists of
P(w), the distribution over possible worlds, and V , a description of how much
we value the results of executing π in world w. A possible world includes the
particular state of the world, the objective for the robot in that world, and the
laws governing the world dynamics.1

So, our question is, what form should π have, and how should we con-
struct it? We describe this process as happening “in the factory:” that is, before
the robots are deployed into the domains where they will be working (such
as peoples’ houses, or hospitals, or shopping malls). There’s a spectrum of
approaches to obtaining programs for general-purpose intelligent robots.

At one extreme (design), we humans engineer the system as much as pos-
sible, based on human insight and experience, exploiting everything we know
about the world distribution P(w), including knowledge of math, physics, and
psychology. The systems we engineer must also include state-estimation and
machine-learning algorithms to be used “on the job”—when the robot is actu-
ally deployed—to enable it to learn about and adapt to its particular world.
Pragmatically, the pure design strategy aligns with the classical practice in
robotics of breaking the problem down and engineering solutions to each sub-
problem. This strategy has been highly effective in complex problems, such
as space missions and nuclear reactors, where the input signals are relatively
simple and the programmers understand the “possible worlds” in detail. But
humans don’t know, at a sufficiently explicit level, how to write the programs
necessary for general processing and interpretation of input images or for con-
trolling even relatively simple robots over the range of possible worlds that,
e.g. a household robot, would face.

At the other extreme (evolution), we humans construct a complex simu-
lation that, in some sense, covers the distribution P(w) of possible worlds a
robot could be deployed in. Coupled with this simulation, we use a completely
general-purpose learning algorithm, with as little built-in bias about the domain

1. This view can encompass other agents, as long as we can model them as having (possibly
unknown) fixed stochastic strategies, but does not extend to a full game-theoretic treatment of
other agents.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 3 — #3 i
i

i
i

i
i

Rationally Engineering Rational Robots 3

as possible, to find—in the factory—a policy π that performs well over all the
simulated domains, on average. If the variability in the distribution over possi-
ble worlds is such that the robot will have to adapt or learn on the job, then it
will be up to the process of learning in the factory to invent any necessary data
structures or learning algorithms needed to accomplish that adaptation.

Our Design Criteria
There are many reasonable positions one could take along the spectrum
between the pure design and pure evolution approaches. How should we decide
between them? Our primary design criteria are:

1. The amount of engineering work required (including human-design of
aspects of the solution π as well as setting up simulations, gathering
training data, etc.).

2. The amount of computation (or learning time in “playground” physical
environments) required in the factory.

3. The general performance of the robot during deployment, including, for
example, the amount of training required to learn new abilities during
deployment.

4. The deployment-time computational efficiency of the robot program.

Additional criteria of real importance include the ease with which humans
can debug, understand, and explain the robot’s behavior (in the factory and
during deployment) and the ability to make safety guarantees.

Current Approaches
Many current approaches aspire to minimize the human-design aspect (as
advocated by Sutton (2019)), to avoid the imposition of incorrect biases on the
system. Some of these approaches use reinforcement-learning algorithms in
simulation to learn policies for behaving in the world. Other current approaches
attempt to bypass the difficulties of reinforcement-learning systems, notably
exploration, by focusing on supervised learning from large-scale imitation
data, whether from teleoperation or internet videos.

In either case, there is still a substantial amount of human design involved:
selecting input and output spaces, designing reward functions and learning
algorithms, choosing the distribution of training environments, picking hyper-
parameters, etc. These methods have been surprisingly successful at relatively
limited-scope problems, but they have not led to solutions for broad-scope
behavior outside of games, in large part because the size of the neural networks
that would be required to represent very general-purpose policies is very large,



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 4 — #4 i
i

i
i

i
i

4 Chapter 1

and the amount of real or simulated experience required to learn them is enor-
mous. Furthermore, very few of these approaches allow the robot to acquire
new abilities during its deployment. Importantly, however, these methods have
been able to synthesize policies that substantially outperform more strongly
engineered methods for tasks such as locomotion and dexterous manipula-
tion. Importantly, for this class of tasks, the learned sensori-motor policies are
very efficient to execute during deployment, making them capable of relatively
high-frequency control.

Despite the effectiveness of current approaches for learning sensorimotor-
control policies, it remains unclear to us how these methods can scale to the
kind of highly general-purpose capacity for intelligent behavior that we are
aiming for, without some additional structure.

1.1.2 Generality and its Discontents
Why is it that implementing or learning very general-purpose policies is so
difficult? Fundamentally, it is because of an enormous growth in the number
of possible courses of action the robot might have to take, as the size and
variability of the domain increases.

Environmental Complexity
Robots must interact with an enormous variety of objects, with a rich variation
in 3D shape, kinematic structure, mass properties, material composition, and
appearance. Even basic grasping presents enormous challenges when viewed
in generality. The 3D shape of the object interacts with the shape of the gripper
to determine grasp stability; small surface details of the object can affect the
quality of contact; the material of both object and gripper affects friction and
how much pressure can be applied; the mass distribution affects which grasps
are stable; the object size determines whether two arms are needed; the pres-
ence of another object in a gripper might require the use of other body surfaces;
and so on.

Importantly, the required robot actions depend not only on the objects
directly relevant to the current task, such as the tabletop to be cleaned, but also
on a wide array of other objects, including objects on the tabletop, chairs near
the table, etc. Putting a sugar box in the pantry might require re-organizing a
shelf to make room. Cutting boa a cucumber might require removing a wrapper
and finding an appropriate knife and cutting board.

Furthermore, the whole robot shape interacts with the environment; it is
not just the grippers that matter. So, all the furniture near a tabletop to be
cleaned constrains the robot motions; any objects occluding the doors to the
pantry must be cleared out; any pots on top of the cutting board must be



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 5 — #5 i
i

i
i

i
i

Rationally Engineering Rational Robots 5

moved. We require a policy that can handle any combination of objects in any
configuration.

Task Horizon
The notion of horizon has many definitions, but the one we find most rele-
vant is, informally, the number of primitive actions in the future that one must
consider to choose the current action. So, for example, a problem in which
the robot must take a lot of actions, but each next action is obvious given the
current state, has a short horizon. But a problem in which the robot must take
several actions in order to enable later actions, or take care not to expend all its
resources too soon, has a longer horizon.

Generally we can structure behavior hierarchically, so that the horizon is
limited at every behavioral level. When driving to a destination, selecting a
route has a long horizon (even at an abstract level where actions are relatively
limited); but given the next intersection to aim for, the lower-level walking or
driving behavior can have a relatively short horizon.

General manipulation tasks, in which object interactions are central, tend
to not decouple as readily and have more complex hierarchical dependencies.
It is generally not possible to construct an abstract plan that ignores object
properties and robot capabilities. Putting a box of sugar away might require
considering motions for many objects with interacting constraints, including
not putting objects down in front of the pantry door before opening it. The
size and weight of an object might require getting a wheelbarrow, which will
constrain the future path. As a result, manipulation tasks tend to be relatively
long horizon.

Partial observability
Most robotics task are partially observable: the robot lacks complete knowl-
edge of the state of the world; it has only inherently partial and noisy
observations. Much current work in robotics assumes that images sufficiently
define the current world state, so that one can learn a policy that maps the cur-
rent image (or a few recent images) to actions. This assumption rules out a
vast swath of applications. Partial observability comes in many forms: object
shape self-occlusion from a single view, occlusion from other objects (e. g.
the drawer where the knife is stored), mass and material properties not evident
from a camera view, complete lack of knowledge of the objects in the next
room, uncertainty about the goals and behavior of humans in the room, etc.

The crucial point here is that the appropriate robot actions at any moment
in time depend not just on the robot’s current sensory observations. In general,
the actions should depend on the history of observations of the robot (or a



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 6 — #6 i
i

i
i

i
i

6 Chapter 1

summary in the form of a “belief state”) as well as general knowledge (priors)
about the world.

Combinatorial complexity
Approaches to learning policies that attempt to limit designed structure must
cope with the combination of environmental complexity, task horizon and par-
tial observability required for competent robot behavior over a wide range
of possible worlds. Although such learning is possible in principle, it would
require intractable amounts of diverse experience, whether in the form of
simulation or “internet scale” data and unfathomable amounts of computation.

1.1.3 Modular, Compositional, Rational Systems
Our contention is that we can exploit what human designers know to break
down the problem complexity, structuring a system design to exploit what
humans are good at while using machine-learning methods to efficiently learn
the rest.

Modularity
One important step is to design a system that is modular, in that it is made
up of multiple components that are independently learnable. Training multiple
smaller modules can require exponentially less data than training one large
one. So, just knowing something about the modular substructure of a function
can substantially reduce the data requirements for learning it.

We advocate building systems with modularity at multiple different scales.
Coarse-grained modularity appears in the overall “architecture” of the system,
perhaps including modules specialized for perception, memory, and planning,
as well as large pre-trained language, vision-language, or video models, as
illustrated in Section 1.3.2.

Compositionality
Modules are even more powerful if they are not fixed into a static assembly, but
are more fine-grained, and can be recombined flexibly to address new prob-
lems. The idea arises in natural-language semantics, articulated by Barbara
Partee: “The meaning of a compound expression is a function of the mean-
ings of its parts and of the way they are syntactically combined.” (Partee 1984)
Formal languages like first-order logic and computer programming languages
also, by design, have compositional semantics and rich, flexible structures that
often allow a very complex computation to have a very simple programmatic
description.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 7 — #7 i
i

i
i

i
i

Rationally Engineering Rational Robots 7

Compositional systems enable positive combinatorial explosions: a small
set of syntactic components can combine to make infinitely many sentences; a
small set of concepts can combine to make infinitely many complex meanings;
a small set of primitive actions can be combined to make infinitely many plans
to solve infinitely many problems.

One critical advantage of compositional systems of this kind is that they
can be learned independently because the individual components have separate
semantics. For example, an individual “neuron” in a typical neural network has
meaning in terms of the role it plays in the larger system, but it is difficult to
assign local, individual semantics to it. However, the meaning of the word
“teacup” can be learned largely independently of the meanings of other words,
and son can be reused in a wide variety of situations.

Rationality
Given a compositional system for generating candidate action sequences and
for predicting and evaluating their effects, the robot can plan to act ratio-
nally; i.e., choose actions that maximize its expected future rewards. Explicitly
reasoning at deployment time to choose actions is slower than executing a pre-
learned feedforward policy, but it avoids an enormous amount of work in the
factory, to derive a policy that has, effectively, already solved all the problems
that it could potentially ever face. It is difficult to imagine this approach being
feasible for addressing the enormous variability of the human world.

Systems that carry out some form of on-line inference can be proved to
be more powerful and more efficient to learn than pure feedforward poli-
cies (C.-C. Lin et al. 2021). A great deal of empirical evidence also supports
this conclusion (Brown and Sandholm 2019).

Modular, compositional, rational systems in robotics
What opportunities do we have for modular design in a robot policy? At the
coarse-grained level, we can assemble a collection of engineered or pre-trained
models with individual competences, ranging from classic motor controllers
and kinematics modules to modern large language and vision models. In the
designs we have in mind, some of these larger modules will have a more
fine-grained compositional structure which will be exploited by search-based
planning and inference algorithms. We outline some of the primary opportuni-
ties for compositional subsystems here and will return to them in more detail
later.

• If we have controllers that can drive the robot to achieve some relatively
local and short-term “subgoals,” (grasping an object, moving safely to a
target pose, and placing) then we can recombine them in many ways to



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 8 — #8 i
i

i
i

i
i

8 Chapter 1

solve longer-term problems, either using a higher-level control program that
decides which controllers to call or using search-based planning algorithms
to compose them into goal-achieving sequences.

• If we have causal or observational “facts” about the robot’s world (dropping
an egg tends to break it, milk is usually kept in the fridge, etc.) we can
combine them at runtime using inference and planning algorithms to draw
conclusions that are implied (logically and/or statistically) by the facts.

• If we have modules that can evaluate whether constraints hold in the world
(the robot would collide with the table if it stood over there, or the plate
is sufficiently upright that the sandwich won’t slip off, for example), then
we can combine them into tests for combinations (the robot won’t collide
and the sandwich won’t slip off), allowing an inference algorithm to try to
achieve the combined objective.

• Relatedly, if we know a description for the set of solutions to a subproblem
(such as motion trajectories) that satisfy one condition and a description
for the set of solutions that satisfy another, we can combine these (via set
intersection) to directly find solutions that satisfy both.

1.1.4 Meeting Our Design Criteria
We believe that one (not the only!) way to design generally intelligent
robots that meets our specifications is for engineers to specify basic modular
decomposition including multiple compositional systems, and then to perform
learning in multiple stages, both inside the factory and on the job.

• This will be not too hard for the engineers, who can use familiar design and
specification methods.

• It will be dramatically more computationally efficient to learn many small
modules that are flexibly recomposed to solve problems.

• Because the individual modules have independent and clear world seman-
tics, new perceptual detectors, controllers, and constraints can be learned on
the job and added to the system without causing that forgetting of previous
knowledge, which can happen with monolithic learned models.

• Because the system’s models are in a combinatorial set of modules, it
can require more computation at inference (deployment, prediction) time
to generate behavioral decisions. This problem can be mitigated through
“caching” solutions to common problem instances, effectively producing a
partial policy that covers many common cases efficiently, but still retaining
generality.

In the following sections, we describe an overall design and implementa-
tion strategy, propose a concrete coarse-grained cognitive architecture, provide



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 9 — #9 i
i

i
i

i
i

Rationally Engineering Rational Robots 9

more detail about compositional learning and inference for one of these mod-
ules (task and motion planning), and finish with a discussion of meta-cognitive
strategies for deciding how to allocate online computation.

1.2 Phases of Design And Implementation

Our approach to designing and implementing rational robots operates in three
phases:

1. Mind design: using a combination of the study of naturally intelligent sys-
tems, the fundamental structure of the physical world, the mathematics
of learning and reasoning, and the competences of existing large models,
determine a coarse-grained modular decomposition of the robot system.

2. Implementation in the factory: using a combination of classical methods
and machine learning techniques in simulation and from large-scale data,
engineer and learn general-purpose models and modules that will serve
as the basis for robots that can be “shipped” to real deployments (for
example, in homes or hospitals).

3. Learning on the job: using lifelong, active learning methods, including
learning from instruction, demonstration and exploration, a robot adapts
itself to the particular environment it finds itself in (for example, tuning
its process for the common requests made of it, learning the household’s
organizational style, and acquiring specific new skills and vocabulary).

We can make a weak analogy between these phases and phases in the
development of a natural intelligence. Very coarsely, we can see mind-design
phase as corresponding to evolution, the in-the-factory learning phase as cor-
responding to early childhood development, and the on-the-job learning phase
as corresponding to learning as an adult. Let’s consider each phase in turn.

1.2.1 Mind Design
Humans engineers are best at specifying algorithms and structural properties
of a domain, and relatively poor at specifying detailed parameter values or
even procedures for carrying out common operations. At this level, we study
general properties of our environment and of new-born natural systems, to try
to find human-expressible fundamental principles of intelligent behavior.

An important source of inspiration here are natural systems. Many cogni-
tive scientists, such as Spelke and Kinzler (2007), believe that humans (and
many non-human animals) are born with fundamental mechanisms for reason-
ing about their physical and social world, including an understanding of solid,
permanent objects, the fundamental relations in three-dimensional space, and
the idea that there are other agents in the world.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 10 — #10 i
i

i
i

i
i

10 Chapter 1

These insights inform our design of data structures: abstracting over objects,
building computational map representations isomorphic to 2D or 3D space, and
constructing convolutional or recurrent networks as appropriate for the prob-
lems at hand. In Section 1.3.1 we elaborate a particular set of design choices
in more detail.

1.2.2 Learning in the Factory
Even after engineers specify some invariant aspects of the domain and the
overall structure of the robot’s computation, there is a lot to do! Because we are
not pursuing a completely end-to-end approach, we think instead of particular
sub-modules that might, to some degree, be mixed and matched to make a
deployable robot system. Some modules will be specific to particular robot
task distributions (a factory robot will require different competences than a
space exploration robot) or morphology, but others will be more generic.

• Perception: segmenting an image into a set of physically coherent objects;
estimating their mass and material; integrating observations over time to
understand 3D shape; making connections to human language.

• Physics: approximate simulation of physical dynamics based on initial
image or object arrangements, including evaluation of stability, etc.

• Navigation: policies for short-horizon navigation through a visible obstacle
field; reaching around and among obstacles for local-space manipulation.

• Control: policies for walking on uneven terrain, robust grasping with tactile
feedback, inserting objects into tight spaces, in-hand manipulation, etc.

• Cultural knowledge: How should one behave in a restaurant? Is the present
King of France bald? What is the word for “crow” in Finnish? What is a
good recipe for chocolate cake?

• Human interaction: What are good ways of getting people to work together?
How can I interpret someone’s navigational intent?

While some of these basic competences are available in the form of pre-
existing engineered modules (such as physics simulators or inverse kinematics
modules), many will require learning, ranging from tuning of existing methods
to acquisition of completely novel models.

Many of these competences are becoming available, with more or less gen-
erality and accuracy, in the form of so-called “foundation models,” including
large-language models (OpenAI 2024a), video-prediction models (OpenAI
2024b), object segmentation models (Kirillov et al. 2023) and local navigation
models (Shah et al. 2023).



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 11 — #11 i
i

i
i

i
i

Rationally Engineering Rational Robots 11

In Section 1.5 we explore a particular flexible representation and set of learn-
ing strategies for robot behavior that can serve as the “glue” for combining
these general competences into a specific robot system.

1.2.3 Learning on the Job
When a robot is sent from the factory to a new job, it should be highly com-
petent in a generic sense (able to navigate, manipulate objects robustly, carry
on a basic conversation, remember what happened yesterday, etc.) but may not
know the specifics that it needs for its new job. These specifics could include
new vocabulary and associated visual detectors, new motor skills, and new
high-level processes as well as specific facts about this world: who the people
are, how the house is arranged, where the whisks are kept, etc. Critically, these
are compositional elements that can be added to the existing competences.

Assume that the robot is always engaged in behaving in the world: it receives
goals from a human or other external process and makes and executes plans
to solve them using its current set of operations. During its “free time,” it
might choose to experiment with objects that are available to it, to improve
its skills (Kumar et al. 2024).

When a job arises that the robot does not know how to perform, such as
tightening a bolt with a wrench, a human will help the robot add a new opera-
tion to its repertoire. It is important to note that the addition and generalization
of the operation happens incrementally, and the robot will continue to improve,
refine, and generalize its ability to execute the operation and its model of its
own capabilities as it continues to carry out the jobs it is assigned.

The human might begin by teaching the robot to recognize new “concepts”
to add to its vocabulary for high-level planning and reasoning, and then demon-
strates a way to achieve them. This work will have an enormous payoff,
because it will allow the robot to use the learned operations in a wide variety
of combinations and situations to address novel problems in future.

The problem setting of learning on the job has unique constraints and
opportunities. It is made difficult by the requirement of being able to learn
immediately from just a few demonstrations and a relatively small amount of
self-supervised training. Offsetting this difficulty is the fact that it need only
operate in the circumstances it finds itself in: initially, it is fine to learn to oper-
ate just the one particular wrench in the shop or to set the table using only the
everyday blue dishes. Generalization from these initial situations can happen
over time, as the robot gains more experience; but the robot will be able to
perform competently in familiar situations with very little training.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 12 — #12 i
i

i
i

i
i

12 Chapter 1

1.3 Mind Design for Rational Robots

Our primary commitment in designing the robot’s mind is to model-based
rationality. That is, that the robot should build up, based on its history of
perception and actions, an explicit representation of a belief about the exter-
nal state of the world. It should then use flexible, goal-directed planning and
inference mechanisms to combine its current belief about the world state with
a “world model” that characterizes the effects of its actions, to select actions
that maximizes its expected utility. We argue that this approach is necessary
for achieving the generality and flexibility required of an intelligent robot with
feasible computational resources.

1.3.1 Compositionality and Rationality
We can see rational inference as a general-purpose method for converting
information from one form into another. In our context, the available infor-
mation consists of perceptual observation histories, which we must map into
an action. Most simply and directly, we could use an explicit feed-forward
policy, in the form of a control law or a look-up table or a neural network.
However, there are many other representational choices, including value func-
tions (mappings from the current state and an action choice into their long-term
utility) and world models (mappings from a state and action into a resulting
state), together with an explicit goal or reward function. This is a pivotal design
choice.

Both value functions and world models are implicit policy representations.
A value function can be understood as a type of energy-based model, which
requires an optimization process to select the next action, given a current state.
A world model is even more indirect, requiring a possibly computationally
expensive planning search process to select the next action.

We adopt the approach of learning world models and using them to infer,
given a reward or goal function, what actions to take, using the principle of
rationality, which states that a rational agent should select actions that will
maximize its expected future utility, in expectation given its current informa-
tion. This approach to implicit policy representation can be modeled as one of
sequential decision-making under uncertainty.

Why would we consider using a representation that requires online compu-
tational work to determine an action? There are several important reasons.

• Sample complexity: For many problems, there is a clear sense in which the
world model is a simpler object than the policy that it implicitly encodes.
Interestingly, recent results in learning theory (C.-C. Lin et al. 2021) show
that in some cases representations that exploit online computation can learn



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 13 — #13 i
i

i
i

i
i

Rationally Engineering Rational Robots 13

richer function classes from the same amount of data than pure feed-forward
or auto-regressive models.

In addition, because world models characterize the dynamics of the exter-
nal world, and the external world is highly structured with locality and
sparsity of effect, world models can be made highly compositional. We can
represent the effects of different actions in separate modules; we can repre-
sent the dynamics of different aspects of the world state in separate modules.
These modules compose so as to further reduce learning complexity because
the parameters in the individual modules are re-used whenever the modules
can be dynamically recombined to solve new problems.

Finally, world models can be learned via self-supervision: every action the
robot takes in the world provides a training example for predicting the results
of its actions. Supervised learning methods, which are generally much more
sample-efficient than policy or value learning, can be applied directly to
these data to acquire world models.

• Goal-independence: A world model is a declarative specification of how
the world works, independent of any particular objective. It can be used, via
inference, to determine behavior for any possible goal. By contrast, policies
and value functions are generally goal-specific; although it is possible to
condition them on a representation of a goal, this conditioning dramatically
increases their complexity and generally can only address a substantially
restricted space of goals.

• Understandability: For complex problems, many factors may contribute to a
decision about which action to take next, involving optimization over many
aspects of the past, present, and future world states. World and reward mod-
els have more clearly understandable local semantics, making learned world
models easier for humans to interpret, and making it easier to produce causal
explanations for why a robot selected a particular action.

• Updatability: This same semantic clarity also makes it easier to update a
learned model based on new experience. A local change in the world model
might have large repercussions for the policy, possibly changing all of its
outputs. Making an update of this kind to an explicit policy would be very
computationally expensive. In addition, it is generally efficient to dynami-
cally adapt a declarative model by adding constraints governing the world
or the robot.

In general, we aim to get the “best of both worlds,” by ensuring that our
robots have the generality of a model-based rational action-selection method,
but address the common cases in their environment using a combination of



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 14 — #14 i
i

i
i

i
i

14 Chapter 1

Figure 1.1
High-level modular decomposition of a rational robot policy

fast feed-forward partial policies. These policies can be obtain by online train-
ing of neural networks, using solutions found via deliberation as data. The
aggregate system would use some form of out-of-distribution detection for the
policies, so that when the current situation is not familiar, the slower plan-
ning and inference mechanisms are invoked. This process is reminiscent of
routinization in the cognitive science literature (Anderson 1983) or possibly
moving capabilities from Kahneman’s “system 2” to “system 1” (Kahneman
2011).

Furthermore, we exploit more subtle forms of learning to make reason-
ing more efficient, through a meta-reasoning process that enables the system
to make decompositions, abstractions, and approximations that focus the
inference process on a sequence of tractable sub-problems, as outlined in
Section 1.6.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 15 — #15 i
i

i
i

i
i

Rationally Engineering Rational Robots 15

1.3.2 Modularity
Figure 1.1 contains a high-level block diagram illustrating the type of cogni-
tive architecture we believe our robots should have. The overall modularity
and the “types” of representations that flow between the modules are the most
important aspects, and that there will be a lot of latitude in implementing each
individual module. The outermost inputs are low-level percepts such as force,
touch and joint proprioception; audio and visual observations, and text and lan-
guage input. The outputs are ultimately language outputs and low-level robot
motor-control commands.

It has become clear that two natural and useful types of representation are
natural-language sequences and images or video sequences. These form the
inputs and outputs of many highly competent pre-trained models, as well as
the fundamental sensed input of cameras and speech/text input and output.
One fundamental question in modern AI is whether any other representations
are necessary.

We won’t explicitly address the question of necessity, but will operate on
the strong intuition that, for compactness and learnability, the structure of our
internal representations should mirror the structure of the world they are repre-
senting. For these reasons, we are committed to two additional representational
structures:

• A notion of physical objects as coherent clumps of matter that tend to stay
connected. There is not a single correct object-based interpretation (do we
speak of individual grapes or the whole bunch?), but we can select a level of
abstraction appropriate to our current objectives (Section 1.6).

• Explicitly three-dimensional representations of space and shape, including
potentially meshes, point-clouds, or grids, indicating the “internal” shapes
of spaces the robot can move within and the “external” shapes of objects it
can manipulate.

1.3.2.1 Modules There are many ways to choose the particular set of mod-
ules in a rational robot architecture; Figure 1.1 contains one basic design, but
we are not strongly committed to this particular modularity. The outputs of
the spatial, object-based, and agent-based memory constitute the robot’s belief
about the state of the external world, and will necessarily be incomplete and
require some explicit representation of uncertainty.

• Scene understanding: process input image sequences and produce hypothe-
sized physical objects, including beliefs about shape, material, mass, etc., as
well as detections of humans.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 16 — #16 i
i

i
i

i
i

16 Chapter 1

• Language understanding: process input text and speech and produce infor-
mation about the beliefs, desired, and intentions of humans in the environ-
ment, as well as information about the physical world state.

• Spatial memory: construct local high-accuracy maps of free space regions
on the scale of rooms; maintain longer-term, hierarchical, more qualitative
representation of graphs of regions.

• Object-based memory: aggregate output of scene understanding over time,
to fuse observations of the same object, reason about how world state
changes over time, cache results of expensive perceptual computations.

• Agent-based memory: model the other agents in the robot’s domain based on
linguistic input and inferences about their behavior; information about what
the users want the robot to do will be aggregated with “background” utility
instilled in the factory to produce objectives for the robot.

• Cognitive manager: given the current belief and overall objectives of the
robot, decide what action to take next; this is done by framing tractable
decision sub-problems and calling the planning module to solve them, and
dispatching commands to the motor control (or linguistic output) modules.

• Planning / reasoning: find an action sequence (at requested level of abstrac-
tion) based on current belief and local goal provided by cognitive manager.

• Goals and intentions: based on what we know about the intentions and
desires of the humans in the world, as well as built-in value functions and
norms, store pending objectives, existing abstract or partial plans, etc.

• Motor control: a collection of low-level motor control policies, ranging
from classical position or compliant controllers to learned locomotion or
dexterous manipulation controllers.

• Language generation: produce speech acts to explicitly communicate infor-
mation or induce action in other agents.

Each of the modules in this architecture require structural design, some engi-
neering specification, learning in the factory, and the ability to adapt on the
job. Our own technical work has focused on the decision-making aspects of
such systems, so the rest of this paper we focus in particular on the planning
component (in sections 1.4 and 1.5) and the cognitive manager component (in
Section 1.6). The other components are no less important, and we feel strongly
that it is critical to work in the context of complete systems that contain at least
basic versions of all these capabilities.

1.3.2.2 Feedback Connections It is difficult to show in the diagram, but
feedback is critical at many levels of this picture. For example, the scene
understanding module should be at least partly query driven, paying attention



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 17 — #17 i
i

i
i

i
i

Rationally Engineering Rational Robots 17

to objects that are of interest to the object-based memory or looking for new
objects needed by the cognitive manager. The object-based memory should
be more active in tracking the state of objects that are relevant to current sub-
goals specified by the cognitive manager; similarly for the spatial memory. The
results of robot controller execution should be fed into the belief update.

1.3.2.3 The Role of General-purpose Pre-trained Models Modern deep
learning methods have enormous strengths, which our strategy can use to great
advantage.

Computer-vision models for image segmentation and shape estimation are
now sufficiently reliable to support the construction of plausible 3D models of
a scene from one or more camera images (Agarwal et al. 2024). These recon-
structions are, of necessity, partial and not perfectly correct, but coupled with
explicit uncertainty quantification (Fang, Kaelbling, and Lozano-Pérez 2024),
they can be combined to form an “object-centric” representation that serves as
the basis for robust and flexible robot manipulation systems.

Another important aspect of modern learning is the discovery of latent repre-
sentations, from raw perception, that serve as compact internal representations
of state for downstream processing. Monolithic latent state representations will
not be consistent with our representational structure, but we exploit the abil-
ity to construct “disentangled” latent representations as part of learning world
models. Of particular interest, especially for semantically “indexing” into an
image or point cloud, are local features (Radford et al. 2021; Oquab et al. 2024;
Shen et al. 2023).

Large language models and vision-language models have several important
roles to play in our approach. They can be seen as serving as a much more rich
and flexible (and fallible) version of the knowledge bases from classical AI.

• They contain factual information that can be of general use, integrated into
the inference process, including answers to queries like “Where might I
find tea in a kitchen?” or “Under what conditions is it safe to use a fire
extinguisher on a kitchen fire?”

• They can suggest courses of action that will guide the search and meta-
cognition processes. Importantly, a learned world-model can be used to val-
idate, elaborate, repair, or reject suggestions from large pre-trained models,
thus using them to improve efficiency without endangering correctness.

• They can suggest abstractions and decompositions of state and action that
are embedded in nouns and verbs of natural language.

The rest of this chapter focuses on the algorithm-design and learning pro-
cesses for the sequential planning module. These have been the focus of our



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 18 — #18 i
i

i
i

i
i

18 Chapter 1

detailed research, and their central role drives design choices throughout the
architecture.

1.4 Long-Horizon Decision-Making

The objective of the sequential planning module is to select the next action for
the robot to execute. Actions must be chosen in service of achieving the robot’s
short and long-term objectives, taking into account its current beliefs about the
world state, and subject to constraints on online computation time. 2

As we have argued, for reasons of sample efficiency in learning and space
efficiency in policy representation, in many cases it is more effective to struc-
ture action selection around online planning. A planning system uses a model
of the dynamics of its world to consider alternative courses of action (usually
sequences of some simple actions), evaluate them in terms of how well they
achieve the agent’s objectives, select the one that appears best, and execute the
first step of that sequence.

We want to emphasize that planning does not require perfect world models,
state estimation, or exhaustive search: our architecture is closed loop, in the
sense that a planning mechanism is used to justify the choice of the next action
for execution, but the observations that the robot makes will be used to update
its estimate of the world state and induce replanning if the action did not appear
to have its intended effect. Thus, errors in interpreting the current world state
(perhaps we were wrong about the shapes of objects, or whether a door was
unlocked) and approximations in planning (perhaps we didn’t consider some
unlikely outcome or find the truly best action sequence) can be mitigated by
re-observing and replanning.

The problems we are addressing are computationally very difficult: optimal
planning for a physically complex (many degree-of-freedom) robot in a phys-
ically complex domain with mixed discrete and continuous dynamics, large
numbers of objects, and substantial uncertainty both with respect to the out-
comes of actions and the actual current state of the world, over a very long time
horizon (hours or days) is completely computationally intractable. We mitigate
this intractability by planning with respect to abstractions and approximations
of the true world dynamics, including: assuming independence among parallel
and sequential subprocesses, planning hierarchically (in more abstract spaces
over a long horizon and fully concretely in the near term), and considering
only likely action outcomes and observations. Taken together, and combined
with replanning, these approximations allow us to use planning to maintain

2. The work we have done does not yet include considerations of deliberation time, but that is an
important question for future work.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 19 — #19 i
i

i
i

i
i

Rationally Engineering Rational Robots 19

Figure 1.2
World-model representations: (A) monolithic image-to-image, (B) lower-dimensional
latent vector representation, (C) factored latent representation, (D) sparse, factored
latent representation. Each successive model assumes more about the structure, can
be learned more efficiently, and can be used for planning more effectively. Note that
the assumption is that underlying structure exists in the model, but not what it is,
specifically.

goal-direction with respect to very long-horizon objectives, to select actions
efficiently in very high-dimensional state spaces, and to be robust with respect
to substantial uncertainty in state and outcome.

In the following sections we begin by focusing on the completely observ-
able case, discussing representations and algorithms for efficient planning in
huge domains with long horizons. Then we extend our methods to handle
uncertainty both in action outcomes and in our estimate of the world state.

1.4.1 World Models with Compositional Structure
A world model is a representation of the effects of an agent’s actions on the
world state for use in planning. Generally it has the form of a mapping from
some representation of a world state and an action to a representation of the
next world state. A critical question is how to represent such mappings to
support computationally efficient planning and data-efficient learning.

Figure 1.2 illustrates a set of representational choices we might make for
world models. Most commonly and simply, a raw representation, such as
images, can be used directly (Ha and Schmidhuber 2018) for planning. This
representational strategy is difficult because it can require a large amount of
data to learn and the accuracy of the resulting images tends to degrade upon



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 20 — #20 i
i

i
i

i
i

20 Chapter 1

repeated application. The video sequences generated by large pre-trained video
models such as Sora (OpenAI 2024b) are generally of superficially high qual-
ity, but the models are expensive, data-hungry, and still prone to significant
errors in actually predicting world dynamics. This strategy is also counter-
intuitive: it is hard to imagine planning a cross-country trip, or even going out
for coffee, at the level of predicting each specific pixel.

We can mitigate the need for data and make smaller models by finding a
lower-dimensional latent representation of the world state, and learn a mapping
from one latent representation to the next (Kurutach et al. 2018). This tends to
reduce data requirements substantially. Neither of these methods can give any
leverage to planning: the only feasible planning strategies are based on forward
search, which is completely intractable unless the action space is small and
the horizon is very short, or in combination with learned or structure-based
search-guidance components.

Factoring
To get significant leverage in both planning and learning, we must expose some
structure in the underlying world dynamics. The first step is to factor (or “dis-
entangle”) the latent representation of the world state into sub-components,
and represent the mapping from the entire previous state into each factor
of the next state independently, as illustrated in Figure 1.2C. These factors
could plausibly be, for example, the indoor and outdoor temperature, num-
ber of occupants of the house, etc. This approach may not improve learning
efficiency directly, although it does enable the incremental addition of new
factors and their predictive models without any interference with previously
learned components. Importantly, it already enables an efficiently in plan-
ning: the iterative width (IW) planners can leverage factored structure to
create a domain-independent search heuristic that can substantially speed up
planning (Geffner and Lipovetzky 2012).

Further leverage in both learning and planning can be obtained by exploiting
structural properties: sparsity, in which relatively few factors are changed by
any given action and locality, in which the new value of a factor depends on
the previous values of relatively few factors. Structurally, we might describe
the update rule for a single factor by specifying which factors it depends on
and specifying some function f to compute the new value.
if heater_running:
temperature := f(temperature, window_open)

In Section 1.5 we discuss strategies for learning such structures and see that
structure can substantially reduce sample complexity. Given a world model of
this form, even stronger domain independent search methods can be exploited.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 21 — #21 i
i

i
i

i
i

Rationally Engineering Rational Robots 21

Figure 1.3
A. The lifted state representation uses objects to induce factoring. B. The world model
can now be represented using sparse, local lifted factors, potentially instantiated for any
object tuple.

Classical AI planning has explored these methods particularly in the case
where the factors have discrete values (Ghallab, Nau, and Traverso 2004), but
these methods can be extended to handle continuous-valued factors.

Lifting
In Section 1.3.2 we discussed a representational commitment to physical
objects. We can exploit the notion of objects in general (physical objects, to
start with, but more abstract objects as well) to extend our approach to fac-
toring. So far, the factors in our representation have referred to state variables
that described aspects of the entire world state, such as the indoor temperature.
More generally, we can let the objects in our domain induce a factoring, by
constructing factors representing properties of and relations among objects, as
illustrated in Figure 1.3A. These properties and relations can be discrete (e.g.,
A is contained in B) or continuous and multi-dimensional (e.g., the relative
pose of A and B).

A lifted representation exposes even more structure and opportunities for
learning and planning efficiency. In general, when describing a world model,
the particular identities of the objects are irrelevant, so that our descriptions are
effectively quantified over the objects they mention. For example, we might
say: for all objects A and B, if A contains B and B is lightweight, then if I move
A, then B will move too. This rule characterizes the behavior of all objects



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 22 — #22 i
i

i
i

i
i

22 Chapter 1

satisfying the “if” clause. The detailed aspects of the rule can be learned once
and it can be applied generically in a wide variety of situations, as illustrated
in Figure 1.3B. This structure is analogous to that of a graph neural network,
in which we learn a small “kernel” describing how to update the state of one
node as a function of the values of its neighbors, and then apply it over all
nodes in a domain, and use it in domains of varying sizes. We might describe
this, formally, as:
let B = object
assume light(B)
achieve contains(A, B)
do move(A, distance)
effect: pose(B) = newpose(relpose(A, B), distance)

The lifted, factored representation of world models can be seen as a type
of “neuro-symbolic” representation: the “symbols” are the object indices and
the factors and the “neural” aspect consists of the functions defining the tests
(contains and light) and update functions (newpose) in terms of more
raw sensory input (or, in our case, state information stored in the object-based
memory). In the case that the properties and relations are all discrete-valued, it
corresponds to classical AI planning representations such as PDDL (Ghallab,
Nau, and Traverso 2004).

We call this generalized form of lifted, factored neuro-symbolic world
model a collection of causal action models. They enable efficient planning and
learning and can be applied to a wide variety of problems (Mao et al. 2024;
Silver et al. 2022). The conditions in the achieve and assume statements
are preconditions which, if true in some state, guarantee that after executing
the action in the do statement, the post-conditions in the effect statement will
be true.

Note that, for the purposes of explaining this type of representation, we are
using familiar names for predicates and representing numeric quantities in a
standard space. However, we will be able to learn rules of exactly this form, in
which the learning algorithm has selected its own latent spaces for continuous
quantities and its own predicates for providing a factored characterization of
object state.

1.4.2 Planning Algorithms
Given factored, lifted world-model representations and a characterization of
an intended result, we can generate plans, in the form of sequences of calls to
primitive controllers, that will move the world from its current state to one sat-
isfying the goal. In the following, we are still making a number of simplifying
assumptions, in particular, that the utility of our actions is not time-dependent,
that the world state does not change except due to actions of the robot, and



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 23 — #23 i
i

i
i

i
i

Rationally Engineering Rational Robots 23

that there are no other agents, except those that can be modeled as a part of the
environment. These are all assumptions we would hope to lift in the future.

A subclass of hybrid (discrete/continuous) planning problems that is par-
ticularly important for robotics and has been relatively widely addressed is
task and motion planning (TAMP) and in fact most TAMP algorithms can
be applied to the more general class of hybrid planning problems (Garrett,
Lozano-Pérez, and Kaelbling 2018; Garrett et al. 2021).

We assume the existence of a set of low-level parameterized “skills,” which
are closed-loop sensorimotor policies (controllers) that will run for some time
and then terminate, generally with some indication of success or failure. An
example skill might be to grasp an object in a hand, parameterized by the
desired coordinate transform between object and hand. Fundamentally, a plan
is a sequence of calls to skill controllers, including values for their continuous
parameters.3

Most TAMP algorithms combine some form of discrete search for a plau-
sible sequence of skills with some form of continuous constraint-satisfaction
problem (CSP) solver for selecting continuous parameters. For example, a plan
to place object A in container B might have the following skeleton (sequence
of skill invocations):
move(init_conf, pick_near_conf, path1)
pick(A, grasp, pick_path)
move(pick_conf, place_near_conf, path2)
place(A, grasp, place_path)

and the accompanying CSP
pose(A) = pose_A_init
pose(B) = pose_B_init
robot_conf = init_conf
connects(path1, init_conf, pick_near_conf)
collision_free(path1)
valid_pick_cmd(pick_path, A, pose_A_init, grasp )
connects(path2, pick_conf, place_near_conf)
collision_free_while_holding(A, grasp, path2)
valid_place_cmd(place_path, A, pose_A_final, grasp )
is_contained(A, pose_A_final, B, pose_B_init)

Each of these constraints is a binary-valued test on high-dimensional con-
tinuous variables. For example,
valid_pick_cmd(pick_path, A, pose_A_init, grasp )

is true when the robot configuration at the end of pick_path corresponds to
the specified grasp on object A when it is placed at pose_A_init, which
is its current pose.

3. It is not at all obvious where planning stops and “skills” begin. We re-open this question in
Section 1.5.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 24 — #24 i
i

i
i

i
i

24 Chapter 1

Figure 1.4
A bimanual robot performs task and motion planning and execution. In this example,
the objective is to place the green block (which starts at the left of the table) on the
“stove” sticker (at the right end of the table), turn on the stove and then serve the block
on the central sticker. The robot’s left arm cannot reach the right end of the table and
the right arm cannot reach the right. The robot must hand over the block from left arm
to right arm by first placing it near the middle of the table (frames 4, 5. 6). The purple
block would cause a collision with the robot’s arm at the chosen hand-off location, so
it is first pushed out of the way (frames 2,3); it must be pushed since it is too wide to be
grasped. After this, the block can be placed on the stove for “cooking” and eventually
“served” (frames 7, 8, 9). (Garrett, Lozano-Pérez, and Kaelbling 2020)

The CSP is typically solved via sampling techniques, in which each con-
straint type has one or more conditional generative models that, given values
for some of the variables in a constraint can produces satisfying values for
others. The effectiveness of TAMP methods is highly contingent on the effec-
tiveness of these samplers. These CSP problems can also be approached via
optimization-based methods (Toussaint 2015).

Although TAMP problems are highly computationally complex, they can
be effectively solved in many practical cases, by exploiting classical search
heuristics and well-tuned samplers. Importantly, as well as being able to solve
basic “pick and place” problems (Figure 1.4), these methods are applica-
ble to a wide variety of richer problems including planning to find objects
(Section 1.4.4.2) and planning in terms of achieving torques necessary to
compress springs or lift heavy objects or open sticky mechanisms (Figure 1.5).



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 25 — #25 i
i

i
i

i
i

Rationally Engineering Rational Robots 25

Figure 1.5
Task and motion planning applied to the problem of opening a bottle with a child-proof
cap, which must be pressed downward while twisting. The planner has a causal action
model for opening the bottle with preconditions described in terms of the necessary
forces and torques; it also has has causal action models indicating that it can apply the
necessary torque on the cap with its hand or with a tool as long as the bottle is either
held in a vice or on the red, high-friction mat. The frames above illustrate one action
sequence in which the robot picks up the blue tool (frames 2, 3), presses the tool on the
bottle (frame 4), rotates the tool (frames 5, 6), puts the tool away (7), then grasps the
cap and lifts it (frames 8, 9). (Holladay, Lozano-Pérez, and Rodriguez 2023)

1.4.3 Temporal Hierarchy
It seems wasteful to plan far into the future if our short-term objective in plan-
ning is to determine the next action for execution, and we know that it is likely
that unanticipated outcomes will induce replanning. However, if our objective
really does require us to select actions now in virtue of the effects they enable
days or weeks into the future, what alternative do we have?

One alternative is to make plans at different levels of temporal granular-
ity. In our work on hierarchical planning in the now (HPN) (Kaelbling and
Lozano-Pérez 2011), we designed and implemented a strategy for using tem-
poral hierarchy for efficiently planning, abstractly, for very long horizons
and using those abstract plans to generate more concrete subgoals for more
detailed, shorter-horizon plans, culminating in completely detailed plans at a
relatively short horizon, the first step of which is executable in the real world.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 26 — #26 i
i

i
i

i
i

26 Chapter 1

The key insight is that when subproblems have the downward refinability
property (Bacchus and Yang 1994) they can be solved independently: given an
abstract plan to clean the house, then cook dinner, then serve it, we can plan
in more detail for the house-cleaning, largely without concern for the details
of the next steps. Of course, we may need to expose some constraints at the
high level to enable downward refinability: we should not spend so much time
cleaning that we don’t have time to cook; we should include a constraint on
the cooking not to mess the house up too much, etc. An early principle for
constructing hierarchies of this kind comes from Sacerdoti’s ABSTRIPS (Sac-
erdoti 1974): it is fine to postpone the achievement of components of the
precondition of an action that can be relatively easily achieved without chang-
ing the state of other components. For example, it is reasonable to ignore the
locations of the serving dishes while cooking, because we know we can move
them around later without jeopardizing dinner. Planning in such a hierarchy is
illustrated in Figure 1.6.

HPN interleaves the processes of planning and execution as follows: it
makes an abstract plan for the top level goal, then picks the first subgoal of that
plan, plans in more detail for it, picks the first subgoal of that plan, etc., until
arriving at a primitive action for execution. In addition, it retains a “stack” of all
the plans it has made in the process, as a kind of summary of the robot’s inten-
tions. On the next step, it checks to see if the action had its expected outcome
and, if so, executes the next planned low-level step. If we have reached the end
of the current plan, HPN pops it off the stack, and makes a more detailed plan
for the next step of the plan above. If unanticipated events occur at any point in
this process, HPN simply pops plans off the stack until the remaining abstract
plan is appropriate in the current situation (e.g., we still plan to make dinner,
but give up on the souffle on finding that there are not enough eggs).

This structure enables efficient planning and robust recovery from unantici-
pated events. It can also enable the robot to exploit new opportunities without
an inordinate amount of time spent replanning (Levihn et al. 2013).

1.4.4 Handling Uncertainty
There is a lot more that we don’t know than that we do know! The same
will be true of our robots. The key to behaving effectively in the presence
of uncertainty is taking it explicitly into account in decision-making. In a
general-purpose robot system, uncertainty about the domain ranges from local
(what are these objects I’m looking at?) to larger scale (what is in the cup-
board or around the corner?) to systemic (how do my motor voltages affect my
motions?) We can model this all, effectively, as uncertainty about the state of
the world, broadly construed.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 27 — #27 i
i

i
i

i
i

Rationally Engineering Rational Robots 27

Goal 0
Goal([Pose6[cabbage]=OP6_Goal_cabbage_3,

Pose6[stove]=OP6_Goal_stove_4],
[IsResting([cabbage, 'OP6_Goal_cabbage_3', stove, 'OP6_Goal_stove_4'])]))

0: pick_hand([cabbage, OP6Pick_323, Hand_59, Grasp_60, Qconf_326, QconfApp_327]):0
1: place_hand([cabbage, stove, OP6_Goal_cabbage_13, OP6_Goal_stove_14, Hand_59, Grasp_60, Qconf_61, QconfApp_62]):2

Goal 4
Goal([CanPath[FC([Holding[cabbage, Hand_59, Grasp_60], Pose6[stove]=OP6_Goal_stove_14]), Path_64],

Holding[cabbage, Hand_59, Grasp_60],
Pose6[stove]=OP6_Goal_stove_14,

graspable[cabbage]],
[IsPlaceKin([cabbage, 'Hand_59', 'Grasp_60', 'OP6_Goal_cabbage_13', 'Qconf_61', 'QconfApp_62', 'QconfDep_63']),

IsPlacePath([cabbage, 'Hand_59', 'Grasp_60', 'OP6_Goal_cabbage_13', 'Qconf_61', 'QconfApp_62', 'QconfDep_63', 'Path_64']),
IsResting([cabbage, 'OP6_Goal_cabbage_13', stove, 'OP6_Goal_stove_14'])])

0: ach_can_path([{Pose6[pepper]=OP6__632}, Path_329, FC([AvailableHand[Hand_59], Pose6[stove]=OP6_Goal_stove_14, Pose6[cabbage]=OP6Pick_323])]):0
1: pick_hand([cabbage, OP6Pick_323, Hand_59, Grasp_60, Qconf_326, QconfApp_327]):1

Goal 5
Goal([CanPath[FC([AvailableHand[right], Pose6[stove]=OP6_Goal_stove_14, Pose6[cabbage]=Trans(…)]), PathProg(pick,3131)],

CanPath[FC([Holding[cabbage, right, Grasp(cabbage,179)], Pose6[stove]=OP6_Goal_stove_14]), PathProg(place,3190)],
Pose6[cabbage]=Trans(…),

Pose6[stove]=OP6_Goal_stove_14,
graspable[cabbage]],

[IsResting([cabbage, Trans(…), stove, 'OP6_Goal_stove_14'])])

0: place_hand([pepper, ObjSupport_1292, OP6__632, OP6Support_1294, Hand_1295, Grasp_1296, Qconf_1297, QconfApp_1298]):0
1: ach_can_path([{Pose6[pepper]=OP6__632}, PathProg(pick,3131), FC([AvailableHand[right], Pose6[stove]=OP6_Goal_stove_14, Pose6[cabbage]=Trans(…)])]):1

Goal 7
Goal([CanPath[FC([AvailableHand[right], Pose6[stove]=OP6_Goal_stove_14, Pose6[cabbage]=Trans(…), Pose6[pepper]=OP6__632]), PathProg(pick,3131)],

CanPath[FC([Holding[cabbage, right, Grasp(cabbage,179)], Pose6[stove]=OP6_Goal_stove_14, Pose6[pepper]=OP6__632]), PathProg(place,3190)],
Pose6[cabbage]=Trans(…),
Pose6[pepper]=OP6__632,

Pose6[stove]=OP6_Goal_stove_14,
graspable[cabbage]],

[IsResting([cabbage, Trans(…), stove, 'OP6_Goal_stove_14'])])

0: pick_hand([pepper, OP6Pick_2006, Hand_1295, Grasp_1296, Qconf_2009, QconfApp_2010]):0
1: place_hand([pepper, ObjSupport_1292, OP6__632, OP6Support_1294, Hand_1295, Grasp_1296, Qconf_1297, QconfApp_1298]):2

Goal 10
Goal([CanPath[FC([Holding[cabbage, right, Grasp(cabbage,179)], Pose6[stove]=OP6_Goal_stove_14, Pose6[pepper]=OP6__632, Pose6[ObjSupport_1292]=OP6Support_1294]), PathProg(place,3190)],

CanPath[FC([Holding[pepper, right, Grasp(pepper,193)], Pose6[stove]=OP6_Goal_stove_14, Pose6[cabbage]=Trans(…), Pose6[ObjSupport_1292]=OP6Support_1294]), Path_1300],
CanPath[FC([Pose6[stove]=OP6_Goal_stove_14, Pose6[cabbage]=Trans(…), Pose6[pepper]=OP6__632, AvailableHand[right], Pose6[ObjSupport_1292]=OP6Support_1294]), PathProg(pick,3131)],

Holding[pepper, right, Grasp(pepper,193)],
Pose6[ObjSupport_1292]=OP6Support_1294,

Pose6[cabbage]=Trans(…),
Pose6[stove]=OP6_Goal_stove_14,

graspable[cabbage],
graspable[pepper]],

[IsPlaceKin([pepper, right, Grasp(pepper,193), 'OP6__632', 'Qconf_1297', 'QconfApp_1298', 'QconfDep_1299']),
IsPlacePath([pepper, right, Grasp(pepper,193), 'OP6__632', 'Qconf_1297', 'QconfApp_1298', 'QconfDep_1299', 'Path_1300']),

IsResting([cabbage, Trans(((-0.574, -0.916, 0.756),[-0.239, 0.971, 0.000, 0.000])), stove, 'OP6_Goal_stove_14']),
IsResting([pepper, 'OP6__632', 'ObjSupport_1292', 'OP6Support_1294'])])

0: move([Qconf_3512, Conf(...)]):0
1: pick_hand([pepper, Trans(…), right, Grasp(pepper,193), Conf(...), Conf(...)]):3

move([Conf(...), Conf(...)]) pick_hand([pepper, Trans(…), right, Grasp(pepper,193), Conf(...), 
Conf(...)])

Goal 11
Goal([CanPath[FC([AvailableHand[right], Pose6[stove]=OP6_Goal_stove_14, Pose6[cabbage]=Trans(…), Pose6[pepper]=Trans(…)]), PathProg(pick,3131)],

CanPath[FC([Holding[cabbage, right, Grasp(cabbage,179)], Pose6[stove]=OP6_Goal_stove_14, Pose6[pepper]=Trans(…]), PathProg(place,3190)],
Pose6[cabbage]=Trans(…),
Pose6[pepper]=Trans(…),

Pose6[stove]=OP6_Goal_stove_14,
graspable[cabbage]],

[IsResting([cabbage, Trans(…), stove, 'OP6_Goal_stove_14'])])

0: move([Qconf_4233, Conf(...)]):0
1: place_hand([pepper, stove, Trans(…), Trans(…), right, Grasp(pepper,193), Conf(...), Conf(...)]):3

move([Conf(...), Conf(...)]) place_hand([pepper, stove, Trans(…), Trans(…)), right, Grasp(pepper,193), Conf(...), 
Conf(...)])

Goal 13
Goal([CanPath[FC([Holding[cabbage, right, Grasp(cabbage,148)], Pose6[stove]=OP6_Goal_stove_14]), Path_64],

Holding[cabbage, right, Grasp(cabbage,148)],
Pose6[stove]=OP6_Goal_stove_14,

graspable[cabbage]],
[IsPlaceKin([cabbage, right, Grasp(cabbage,148), 'OP6_Goal_cabbage_13', 'Qconf_61', 'QconfApp_62', 'QconfDep_63']),

IsPlacePath([cabbage, right, Grasp(cabbage,148), 'OP6_Goal_cabbage_13', 'Qconf_61', 'QconfApp_62', 'QconfDep_63', 'Path_64']),
IsResting([cabbage, 'OP6_Goal_cabbage_13', stove, 'OP6_Goal_stove_14'])])

0: move([Qconf_4844, Conf(...)]):0
1: pick_hand([cabbage, Trans(), right, Grasp(cabbage,148), Conf(...), Conf(...)]):3

move([Conf(...), Conf(...)]) pick_hand([cabbage, Trans(…), right, Grasp(cabbage,148), Conf(...), Conf(...)])

Goal 14
Goal([Pose6[cabbage]=Trans(…),

Pose6[stove]=Trans(…)],
[])

0: move([Qconf_5205, Conf(...)]):0
1: place_hand([cabbage, stove, Trans(…), Trans(…)), right, Grasp(cabbage,148), Conf(...), Conf(...)]):3

move([Conf(...), Conf(...)]) place_hand([cabbage, stove, Trans(…), Trans(…), right, Grasp(cabbage,148), Conf(...), Conf(...)])

Holding(pepper)

CanPath(PickPath(cabbage))

Holding(cabbage) On(cabbage, stove)

Figure 1.6
Hierarchical planning and execution: the robot’s goal is for the “cabbage” (green object)
to be on the “stove” (a different table). A combination of fixed obstacles and a movable
black obstacle (“pepper”) prevent the robot from directly picking up the cabbage. The
tree structure indicates the hierarchical reasoning process: the blue nodes represent sub-
goals and the green nodes are primitive action executions. At the highest level, it plans
to pick up the cabbage, then move, and place it on the stove. Then, it plans to achieve
the Holding(cabbage) condition in more detail. A subgoal of that is to clear a path
for picking up the cabbage, which itself requires picking and placing the pepper out of
the way. (Kaelbling and Lozano-Pérez 2011)

We divide our thinking about uncertainty into uncertainty about how the
future will unfold and uncertainty about the present state.

1.4.4.1 Future-state Uncertainty The simplest kind of uncertainty to
model is randomness in action outcomes, under the assumption that the state is
always observable; this is the classic Markov decision problem (MDP) formu-
lation. It is important that we continue to express and exploit the structure in the
domain, extending the factoring and sparsity ideas to the case of probabilistic
outcomes. We can formalize this world model similarly to the deterministic
one, except with a probability distribution over the resulting value of each
feature that changes.

Making these structural sparsity assumptions, as much as possible while
retaining reasonably good predictive accuracy and planning efficacy, will retain



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 28 — #28 i
i

i
i

i
i

28 Chapter 1

Figure 1.7
The M0M architecture has the form of a closed-loop policy. Given a single input RGBD
image, the perception module performs object instance segmentation and shape com-
pletion to produce an object-based estimate of the 3D world state. Given a goal in
first-order logic, the TAMP system makes a plan under the assumption the perceived
world state is accurate. It executes the resulting plan by calling the planned skill con-
trollers, but looks at the scene after each place action, constructing a new world state
estimate, and replanning if the result of its actions was not what it intended. (Curtis,
Fang, Kaelbling, Lozano-Pérez, and Garrett 2022)

the good sample-complexity results for learning that we have for factored
deterministic models (Pasula, Zettlemoyer, and Kaelbling 2007).

Determinization and Replanning
In many domains, especially when there are no “dead ends” (states from which
the robot is effectively unable to achieve the goal) or very bad downside risks
(of damage to itself or others), it suffices to convert the non-deterministic
model to a deterministic one and plan (approximately) as usual. The simplest
version of this strategy is to assume that the most likely outcome will occur. It
will, of course, be critical to observe the actual outcome and replan if it differs
from the intended one. More complex strategies can even include a less-than-
most-probable outcome in a plan (e.g., when good luck is the only hope!).
The major benefit of determinizing a stochastic domain is that we can use our
existing efficient solution methods.

Note that, when using world model rules plus planning as an implementa-
tion strategy for a policy, we absolutely rely on our closed-loop hierarchical
replanning mechanism to handle stochastic outcomes. This somewhat casual
attitude about world models is fine as long as the actions selected usually move
the system toward its objective and there is little to no risk of a substantially
bad outcome.

We used this strategy to build the Manipulation with Zero Models (M0M)
TAMP system (Curtis et al. 2022), which supports sophisticated pick and place



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 29 — #29 i
i

i
i

i
i

Rationally Engineering Rational Robots 29

Figure 1.8
The robot is given the goal of putting all the objects on the blue mat. From its perspec-
tive, it can only see the large box, and so the estimated state contains a single object,
and the TAMP system plans to place it on the mat (frames 1, 2, 3). After doing so,
the robot re-observes the scene and discovers two more objects, which had previously
been occluded. It constructs a new plan to accommodate all three objects on the mat,
which requires first removing the big box (frame 4), because it can’t reach over the top
to place something behind the box), then placing the two small objects (5, 6, 7, 8), and
finally re-placing the large box (9). If the scene were to be perturbed again, the robot
would immediately act to re-achieve the goal. (Curtis, Fang, Kaelbling, Lozano-Pérez,
and Garrett 2022)

manipulation with no prior 3D models of objects and a rich logic-based specifi-
cation language for goals. It is structured as a closed-loop policy, as illustrated
in Figure 1.7. The replanning loop can cope effectively with a variety of
surprises, including some that arise due to partial observability. Figure 1.8
illustrates an example execution history.

Conditional Planning
However, even with a probability-sensitive model, determinization inherently
means that the robot is not considering how bad the outcome might be if
something goes wrong. Unfortunately, addressing this problem in generality
requires a substantial step up in the complexity of planning, because rather
than constructing a single action sequence, we have to construct a policy
tree, which branches on possible outcomes and selects actions to take in



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 30 — #30 i
i

i
i

i
i

30 Chapter 1

every case. The complexity of this process can be reduced by using sampling-
based approaches, such as sampling-based (Kearns, Mansour, and Ng 1999) or
Monte-Carlo tree search (Coulom 2006), but it is hard combine these methods
with sparse, lifted representations to plan in very large domains at long hori-
zons, without very substantial computational cost. This is an important area for
future work.

1.4.4.2 Partial Observability The move to handling current-state uncer-
tainty is much more substantial. Although in some very simple cases (such as
the one illustrated in Figure 1.8), it may suffice to make a single best estimate
of the world state and act as if it were true, generally, it is critical to be able to
plan to take actions to gain information that will aid in future decision-making
to perform well in the presence of current-state uncertainty. Fundamentally, the
robot must model the space of its own beliefs about the world state, and plan
in that belief space. General planning in belief space is wildly intractable, so
we seek approximations.

We begin by observing that the belief-state process, that is, the stochastic
process governing the evolution of the robot’s belief state over time, as a func-
tion of its actions and observations, can be understood as a Markov decision
process in the (generally continuous) space of belief states. The robot starts in
an initial belief state b0, selects an action a0, and then the world draws an obser-
vation from the distribution P(o | b0, a0). Given this new observation, o1, we
can use Bayes rule to update the belief, obtaining b1 = bayesUpdate(b0, a0, o1).
Armed with this view, we can apply solution methods discussed above for
MDPs, including replanning and the most-likely outcome determinization.

Perhaps surprisingly, if operating in belief space (where a goal might now
be that the robot’s belief is high that it is within some distance d of some tar-
get location), then replanning in belief space with determinization can yield
effective policies that combine information-gathering and action. Early work
by Platt et al. (2010) illustrates the effectiveness of this approach in a simple
domain, as shown in Figure 1.9. The driving intuition here is that if the robot
does not take any sensing actions, it cannot reach its objective of having low
uncertainty about its location. Thus, it has to select observation actions, even
under the assumption that those observation actions will yield their most likely
outcome. If the robot is mistaken, then the sensing action will cause it to update
its belief, and then to make a new plan that is more apt given this new informa-
tion about the world (Figure 1.9). In simple circumstances, this approach has
been shown to be provably convergent, and in many other cases it is practically
valuable (Platt et al. 2010).



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 31 — #31 i
i

i
i

i
i

Rationally Engineering Rational Robots 31

Figure 1.9
The robot in this simple example is a point in the plane. It can sense its location, but
can only do so reliable in the “lighter” parts of the domain. Its belief state is modeled
as an isotropic Gaussian; the large yellow circle indicates one standard deviation of its
initial belief about its location. The goal is to reach location (0, 0) with high certainty.
The left panel illustrates the initial plan, made under the assumption that the robot will
always make the most likely observation. Under this plan, the robot moves to where
it is bright, “hangs out” until its uncertainty is substantially reduced, and then moves
toward the goal. The blue path in the right pane illustrates the actual robot trajectory
that results from executing a replanning strategy in this model. The robot’s initial state
is, in fact, located at the black plus sign (which is very highly unlikely in the initial
belief). The robot begins executing the plan to move right and downward, stopping
periodically to re-estimate and replan. It slowly realizes where it is and that is has
actually moved farther down than necessary, but recovers and reaches the target. (Platt,
Tedrake, Kaelbling, and Lozano-Pérez 2010)

We can determinize this process, as in the previous section, and use causal
action models to characterize a lifted and factored model of how the robot’s
beliefs change over time. We will generally have causal action models (CAMs)
with belief preconditions (e.g., you have to know the location of an object
reasonably accurately before trying to pick it up with a precision grasp) as well
as CAMs with belief results (e.g., if you get a visual observation that includes
most of an object, the result will be that you know its pose fairly accurately.

Figure 1.10 shows a sequence of manipulation and observation operations
produced by a belief-space TAMP system (Garrett et al. 2020) implemented
in the PDDLStream TAMP framework (Garrett, Lozano-Pérez, and Kaelbling
2020). It uses a form of determinization (Barry, Kaelbling, and Lozano-Pérez
2011) that uses costs to model the utility of adding uncertain actions to a plan.
In particular, if it proposes to take an action that has probability p of suc-
cess and basic execution cost c, then in the planning search, it assigns cost c/p



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 32 — #32 i
i

i
i

i
i

32 Chapter 1

Figure 1.10
An execution sequence of a belief-space TAMP system. The robot’s goal is for the
can of spam to be in the bottom drawer. The robot knows the shapes of the objects
in its domain but not their poses. It initially plans, optimistically, to open the lower
drawer and find the spam there (frames 1, 2). Sadly, it is disappointed when it looks
in the drawer, and must replan. It decides to look in the upper drawer, which requires
reasoning about reachability, and closing the lower drawer first (frame 3). It opens the
upper drawer (frame 4) and finds the spam! It then places it on the counter (frames 5,
6), closes the upper drawer (frame 7), opens the lower drawer (frame 8) and places the
Spam where it goes (frame 9). Throughout the planning process, the system maintained
a “particle filter” estimate of its current belief about the location of the Spam and used
it to reason about the effects of its actions and observations during planning. (Garrett,
Paxton, Lozano-Pérez, Kaelbling, and Fox 2020)

which is the expected cost of successfully achieving the desired effect under
the (unrealistic) assumptions that if the action does not succeed, the world
state will remain the same and that successive attempts of the action have
independent success probabilities.

Hierarchical replanning is particularly important when planning in belief
space, because in many cases there is simply not enough information to com-
plete a detailed plan. Figure 1.11 illustrates a similar process, this time with
the robot seeking to place a full oil bottle in a desired location. The robot ini-
tially doesn’t know what objects exist in the world, nor what their color, type,
or mass properties are. It makes plans to look for suitable objects and to weigh
them if necessary, ultimately finding a suitable oil bottle and placing it on the



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 33 — #33 i
i

i
i

i
i

Rationally Engineering Rational Robots 33

Figure 1.11
Actions in response to the goal of having a heavy oil bottle on the table to the right. The
robot picks up one bottle and feels that it is light (frames 1, 2), so it puts it down (frame
3), and picks up the other one and places it on the correct table (frame 4). This process
requires planning to sense, belief update, and re-planning. (Kaelbling, LaGrassa, and
Lozano-Pérez 2021)

desk. Importantly, HPN postpones detailed manipulation planning until it has
observed appropriate candidate objects.

The work described in this section demonstrates that there are computa-
tionally feasible method for generating robust and flexible behavior, even in
domains with substantial partial observability, via closed-loop perceptually-
driven replanning policies. Furthermore, there are no general, robust strategies
for solving problems of this kind by direct specification of policies of value
functions. In the next section, we show how to learn the world models
necessary to support rational decision-making.

1.5 Learning World Models for Decision-Making

In the previous section we showed various approaches for describing highly
generalized policies in complex domains with uncertainty. At design time, we
determine the “language” that the robot will use to represent what it knows
about its domain and some algorithms that it can use to turn that implicit rep-
resentation into a decision about what action to take. Now we study strategies
for using machine-learning methods to acquire causal action models, both in
the factory and on the job.

One important observation is that the lifted, factored causal action models
that describe aspects of the world model, are relatively easy to learn. Their
semantics and correctness are entirely local: given observable data about sit-
uations in which the relevant action (e.g. place(X, Y)) was executed and the
resulting situations, it is not difficult to learn the conditions and effects of
declarative rules.

Causal action models are also natural for incremental learning: we can
change one rule on the basis of new information without having to change all



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 34 — #34 i
i

i
i

i
i

34 Chapter 1

Figure 1.12
An action trajectory resulting from a TAMP system that combines learned causal action
models for pushing and pouring with engineered CAMs for pick, move, and place oper-
ations. It was given the goal of placing material (which is initially in the blue cup) into
the red bowl. Given the initial positions of the cup and bowl, it cannot reach far enough
to simply pick up the cup an and pour into the bowl. With no training on combined
operations, but simply reasoning about preconditions and effects, it plans to push the
bowl toward the center of its workspace with one hand and then pour into it with the
other. (Z. Wang, Garrett, Kaelbling, and Lozano-Pérez 2021)

the others. We can also add new primitive operations and learn causal action
models to describe their behavior, independently of my existing rules. And
then, importantly, we can combine these new models with the old ones to solve
a whole new class of problems, as illustrated in Figure 1.12.

1.5.1 Learning Causal Action Models
The problem of learning causal action models (CAMs) is at first quite daunting,
because there are many components, including

• Predicates, which are tests on the belief state, about the relationship among
a small set of objects, which may be instantiated as neural networks;

• State-update functions, which take as input some aspects of the state of a
small set of objects and produce a new value for some aspects of an object,
which will generally also be instantiated as neural networks;

• Controllers, which are parameterized programs that cause the robot to
move; they generally involve high-bandwidth feedback in terms of low-level
sensors and may, for example, include compliant control or visual servoing;

• CAM rule structures, which provide the causal connection between precon-
ditions that, if true in the current belief state, guarantee that after calling the
controller with appropriate parameters, the postconditions will be true; and



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 35 — #35 i
i

i
i

i
i

Rationally Engineering Rational Robots 35

Figure 1.13
An illustration of learning causal action models from experience. Given a small set
of predicates that are used to specify goals to the robot (grounded in its perceptual
input), a set of low-level parameterized skills, and a set of demonstration trajectories
labeled with the skills that were used to produce them and the goal they achieve, we
use a combination of program-synthesis and statistical learning methods to synthesize
predicates, CAM rule descriptions, and generative samplers for selecting continuous
parameters. These learned models can be used to plan for problem domains that are
substantially different and more complex than those used for training. (Silver, Chitnis,
Kumar, McClinton, Lozano-Pérez, Kaelbling, and Tenenbaum 2023)

• Constraints, which are additional relations on parameters in the precondi-
tions, controller, and postconditions that must be satisfied for the effects to
be guaranteed.

There are several existing approaches to learning CAMs, each of which
assumes some parts are given, and learns the rest.

One frequently pursued approach is to assume that there is a fixed set of
controllers, sometimes called behaviors or skills, which nucleates learning of
the other aspects. Early work along these lines includes strategies for learning
rule structures, including new predicates, with probability distributions over
the outcomes (Pasula, Zettlemoyer, and Kaelbling 2007; Lang, Toussaint, and
Kersting 2012). Konidaris, Kaelbling, and Lozano-Pérez (2018) pioneered the
“skills to symbols” approach for learning a complete discrete symbolic model
of a given set of skills that is suitable for planning under the assumption of
complete downward refinability.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 36 — #36 i
i

i
i

i
i

36 Chapter 1

Figure 1.14
Illustration of jointly learning state-update functions and vision-based object-property
detectors via backpropagation through a computation graph derived from a training
example trajectory. The user labels the trajectory as, for example, scooping red beads
and then pouring them into a blue bowl. From this, and examples like these, but no more
fine-grained labeling, it learns neural network components that are structured so that the
resulting CAMs can be used to solve very novel problem instances. (Mao et al. 2022;
Y. Wang et al. 2024)

More recently, work on learning neuro-symbolic relational transition
(NSRT) rules for bi-level planning (Silver et al. 2022; Silver et al. 2023), illus-
trated in Figure 1.13 also focuses on learning discrete predicates and rules, but
uses them for bi-level planning, which means that the high-level rules serve as
guidance for planning in an already known low-level, high-accuracy simulator,
and so do not have to be perfectly accurate.

Another approach, called PDSketch (Mao et al. 2022), connects more
directly with real visual perception. It allows a user to specify the basic struc-
ture of a set of CAMs, and uses end-to-end learning to acquire neural-network
models of predicate groundings and state-update functions (Figure 1.14).
Empirical results illustrate that providing a very small amount of structural
knowledge makes the learning process substantially more sample efficient.

A complementary strategy is, given predicates that identify important
aspects of the world state, to learn motor-control policies or skills for mak-
ing those predicates true. This can be done via learning from demonstration or



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 37 — #37 i
i

i
i

i
i

Rationally Engineering Rational Robots 37

Figure 1.15
Given a new motor-control policy (in this case, for pouring) and a template for a
causal action model description (which indicates which properties of which objects
are relevant), our objective is to learn a constraint function that indicates which com-
binations of values of parameters describing the initial state, controller, and goal, will
result in a successful execution. We use active experiment design, via Gaussian pro-
cess regression, to select training situations, and use the planner to select object grasps
and trajectories during training. This approach can efficiently learn the preconditions
and effects of the new skill, enabling it to be immediately combined, via planning,
with existing skills, as illustrated in Figure 1.12. (Z. Wang, Garrett, Kaelbling, and
Lozano-Pérez 2021)

reinforcement, or simultaneously with predicate and rule learning, given seg-
mented demonstrations (Silver et al. 2022). And, for robotics problems that
require constraints on continuous parameters to be considered during plan-
ning (for example, where to place the robot base and arm before attempting to
invoke a skill for pouring), it is possible to learn a generative model for the con-
straint while minimizing the online sample complexity (Z. Wang et al. 2021)
(see Figure 1.15).

1.5.2 Incremental Learning Cycle
Ultimately, our vision is to combine ideas from all of these approaches, to build
a system that incrementally acquires and refines CAMs, starting in the factory
and continuing throughout its deployed lifetime. The cycle might operate as
follows (Figure 1.16):



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 38 — #38 i
i

i
i

i
i

38 Chapter 1

Figure 1.16
Continual learning cycle for causal action models: Innate predicates engender con-
trollers to achieve them; CAMs are instantiated to represent the pre-images of the
operations; expressing preimages may require new concepts which are instantiated with
new predicates; these predicates may require new controllers, etc.

• We begin with some initial predicates, which might be innate (e.g., whether
an object is being grasped or not), or learned via explicit teaching.

• We use a combination of learning from demonstration and reinforcement
learning, based on strong control-theoretic primitives, to acquire controllers
that can achieve those predicates; these controllers can be relatively short-
horizon but one objective is to make set of states from which they can
reliably achieve the desired predicate be as large as possible.

• Given a controller and a desired resulting predicate, we can instantiate a
partial causal action model.

• Now, we must learn the preimage, that is, conditions under which the learned
controller has the desired effect. To the extent possible, these should be
articulated in terms of existing predicates on the world state and constraints
among numerical parameters in the pre-image conditions, the result, and the
controller.

• In some cases, it will be necessary to articulate a novel precondition: e.g.,
what has to be true of a pitcher for using it to pour causes water to be in
my glass? In these cases, we can instantiate a new predicate and learn a test
for it, and then go around the cycle again, learning a controller to make that
predicate true, etc.

An incremental learning process of this kind is likely to end up with a messy,
sub-optimal set of CAMs. We envision a parallel computational process,
inspired by the “sleep” phase of DreamCoder (Ellis et al. 2023), that might



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 39 — #39 i
i

i
i

i
i

Rationally Engineering Rational Robots 39

notice and clean up repeated structure, find predicates that would be more
effective if split into separate components, etc.

An advantage of this overall strategy is its flexibility: engineers could
potentially build in predicates, controllers, and CAMs to support basic pick-
and-place TAMP operations, robots could learn additional components in
the factory, and then a robot fielded in someone’s home could quickly and
incrementally learn specialized components for cooking their owner’s favorite
dinner.

1.5.3 Leveraging Pretrained Models
Large vision and language models have an important role to play in the acqui-
sition of CAMs. Our approach is to use these models to guide learning CAMs;
however, to retain robustness and reliability, we do not use these models
directly to select actions (as is done by (K. Lin et al. 2023)).

The Ada method (Wong et al. 2024) uses large language models to incre-
mentally guide learning discrete CAMs as well as their associated controllers.
In particular, the LLM is used for translating natural-language goals into for-
mal language for the planner, for suggesting potential high-level task decom-
positions, and then for converting them into CAM rule structures (including
preconditions and effects). This process leverages both the “common sense”
causal knowledge contained in the LLM as well as the natural-language con-
cepts that have evolved to be a compact and expressive way of describing
important aspects of the world.

Large vision language models (VLMs) combine the strengths of LLMs with
the ability to interpret and generate images and short video sequences. Given
a demonstration of a complex process (such as making tea or assembling a
table), a VLM can be used to suggest relevant predicates as well as to (with
moderate reliability) serve as the mechanism for grounding those predicates in
future applications of planning with CAMs that have been learned based on
those predicates (Athalye et al. 2024).

1.5.4 Learning World Models under Partial Observability
In general, learning causal models when the world state is not fully observ-
able is highly computationally complex, requiring probabilistic estimation of
the actual underlying state and using expectation-maximization to optimize
the world model. This process is intractable for all but the smallest hidden
Markov models, and generally plagued by local optima, unless very restrictive
assumptions are made.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 40 — #40 i
i

i
i

i
i

40 Chapter 1

Humans clearly have substantial partial observability, but also are quite
clearly able to learn effective causal models of our world. What is the spe-
cial property of our world that enables this? One view is that, with effort, we
can determine most “everyday” properties of the world we live in: we might
not know how much something weighs, or what is inside a drawer, or how hard
it is necessary to pull on a door to open it, but with a relatively small amount
of local experimentation and observation, we can determine these features of
the world state to a sufficient degree of accuracy to be useful in planning our
actions. The work of Merlin et al. (2024) provides a framework for locally
observable MDPs and shows that they can be solved efficiently. It seems likely
that models such as this can be learned more efficiently, as well.

For these reasons, our view is that it is not generally necessary to explicitly
handle partial observability in model learning. For learning in the factory, we
may be able to engineer access to privileged information in simulation or run
special information-gathering processes in physical environments. For learn-
ing during deployment, the considerations relating to explicit information-
gathering actions discussed in Section 1.4.4.2 apply.

1.6 Meta-Cognition

So far, we have argued for learning to behave by acquiring a lifted, factored
model of how the robot’s actions affect the world state or its own belief, and
using planning algorithms that operate over approximations of that model to
efficiently solve problems. These techniques are helpful, but will not suffice
for addressing truly large problems. To do so, we need strategies for improving
the efficiency of planning and learning. In the sections below, we discuss two
approaches to this problem: improving the speed of solving a particular plan-
ning problem, and reducing large problems into collections of smaller ones. We
can think of these process as a kind of meta-reasoning or meta-learning (Rus-
sell and Wefald 1991): thinking and learning about how to think. One critical
point to keep in mind is that, since metacognition is intended to make the
cognitive process more efficient, it is necessary that the metacognitive process
itself be highly computationally efficient. This is a good place for using learned
(or pre-compiled) policies that run effectively in constant time.

1.6.1 Learning to Select Actions Efficiently
We can use learning to speed up the planning process as well as to “cache”
its results. To speed up planning, we retain the causal action model, and still
search for a plan satisfying start, goal, and action constraints, but use learned
components to guide the search by generating choices (discrete actions, objects



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 41 — #41 i
i

i
i

i
i

Rationally Engineering Rational Robots 41

to operate on, continuous parameter values) that are more likely to be useful
and by providing heuristic evaluation of intermediate states.

Learning a heuristic or goal-conditioned value-function estimate has been
demonstrated to be useful in systems from Alpha Zero (Schrittwieser et
al. 2020) to classical planning (Gehring et al. 2022). In TAMP, there have been
several systems for learning and using heuristic functions (Mao et al. 2022;
Kim and Shimanuki 2019). Such a value function can be used to decide which
branches of the search tree to evaluate first when planning.

Another critical part of speeding up search, particularly in continuous
domains, is learning samplers that select particular objects in the domain (e.g.,
a container to carry something) or continuous parameter values (e.g., a place-
ment for an object inside a box). Although rejection sampling can generally,
eventually, find samples that satisfy a set of constraints, if they exist, it can
take a prohibitively long time. We have explored several strategies for learning
samplers to improve the efficiency of planning, including doing so while learn-
ing preimage constraints (Z. Wang et al. 2021) and adapting samplers online,
during the robot’s deployment (Mendez, Kaelbling, and Lozano-Pérez 2023).

Sometimes there are sequences or patterns of primitive (or higher-level)
steps that together form a “macro-operator” that can be used to achieve a class
of goals; rather than rediscover the sequence via planning, we can make a
new causal action model that characterizes the preconditions and effects of
the entire sequence, and that can be freely combined with other CAMs to
plan more complex sequences. We have explored learning sequences, together
with specialized samplers for parameters (such as grasps or placements) that
make the entire sequence have the desired effect, in the context of tool use for
manipulation (Mao et al. 2023; Liu et al. 2024).

Another strategy is to use the results of planning to directly train a policy
via supervised learning (Mandlekar et al. 2023). In the setting of an agent that
is learning online, we would expect the policy to be partial in the sense that
it only makes good action predictions in parts of the space for which it has
had training data. An approach that we have experimented with, in this case,
is to equip the policy with a facility for uncertainty quantification or out-of-
distribution detection, and then, in situations where the policy can make a high-
confidence prediction, execute the action it suggests; otherwise, run the planner
on the world model to get a plan, and both execute the plan and use it as more
training data to improve the domain of the policy.

Finally, we can leverage large pre-trained models to provide search guidance
at many levels. For example, Yang et al. (2025) used a vision-language model
to suggest high-level steps for a very long-horizon plan; these steps served as



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 42 — #42 i
i

i
i

i
i

42 Chapter 1

subgoals for detailed TAMP planning; the composed system was much more
effective than the VLM or the TAMP system alone.

1.6.2 Dynamic Abstraction
One way to approach scaling is to try to make representations and algorithms
that will let us directly solve very large planning instances. But we advocate
a different way: scaling the huge problem we have before us (managing a
household for a month or clearing a disaster area) down by breaking it into
a sequence of tractable subproblems. There are several potential sources of
leverage for doing this. In each case, we make smaller problems.

In our architecture (Figure 1.1), it is the cognitive manager module that
decides, based on the current goals and beliefs of the agent, whether and how to
formulate a planning problem, and ultimately, what actions should be executed
via language or motor control.

Temporal abstraction In Section 1.4.3 we discussed a strategy for using
hierarchy to make planning efficient. Importantly, though, choices about
exactly what hierarchical decomposition to use should be made flexibly, based
on aspects of the current state and goal, as well as a sense of the current
time pressure. Self-supervised learning, based on previous uses of hierarchi-
cal approximations, can be used to train a policy for deciding, for example,
how detailed a plan should be obtained before beginning to execute.

Spatial abstraction In general, we would like our robots to operate with
horizons of days or weeks, in domains with thousands of objects and a large
spatial scale. It is clear that if any aspect of the robot’s decision-making process
is even linear in this spatial complexity, then it will be too slow. However,
for any particular planning problem (possibly very detailed and short-horizon;
or very abstract and long-horizon) it will be possible to construct an abstract
representation of the state space that makes the planning feasible. For example,
we might represent and plan in a highly accurate but local model of a room,
when determining paths for the robot or placement for furniture, while ignoring
the rest of the house or town. But we might change views, and represent the
town at the scale of road intersections for the purpose of scheduling errands.
Similarly, one set of objects and properties might be critical to a particular sub-
plan, allowing the rest to be ignored. In one pilot project (Silver et al. 2021),
we used graph neural networks to predict which objects would be relevant to a
given planning problem instance, substantially decreasing running time for the
overall planning process.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 43 — #43 i
i

i
i

i
i

Rationally Engineering Rational Robots 43

Teleological abstraction Related to temporal abstraction is a more general
notion of teleological, or goal-based abstraction. Typical planning formula-
tions have a single conjunctive goal (e.g., the table is set and the dinner is
ready); typical Markov decision-process formulations ask the agent to opti-
mize some cumulative reward measure. In real-world long-horizon problems,
we require a formulation that is more structured than reward maximization
but more nuanced than a single terminal conjunctive goal. More typically, an
agent running a household or working to stabilize a disaster area has multi-
ple simultaneous objectives (maintain safety, improve water supply, keep the
house clean, etc.) but must be able to reduce that complex global objective into
a sequence of much more localized, shorter-term objectives. For example, it
might make a decision to focus on fixing a particular water main, which will
help with improving the water supply; but it would be necessary to do that
work subject to constraints about safety and stability, to prevent making prob-
lems worse in other dimensions. This is an important area for future research,
in which there is currently little relevant work of our own or of others.

1.7 Conclusions

The key to building robots that have the intelligence, robustness, and flexi-
bility of humans is generality. They must be able to react reasonably to the
enormous range of circumstances that may arise in our complex world. It may
in principle be possible to achieve such generality via an enormous amount of
data, but we advocate for exploring an alternative strategy, in which strong
structural priors grounded in math, physics, and cognition provide a basis
for extreme generalization from small amounts of data. We argue that mod-
ularity, compositionality, and model-based run-time rationality provide the
necessary ingredients for the design of robots that can exploit pre-trained mod-
els, learn completely novel concepts and behaviors during deployment, and
react intelligently to whatever the world may bring.



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 44 — #44 i
i

i
i

i
i



i
i

“paper_mit” — 2025/3/23 — 16:22 — page 45 — #45 i
i

i
i

i
i

Bibliography

Agarwal, Aditya, Gaurav Singh, Bipasha Sen, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. 2024. SceneComplete: Open-World 3D Scene Completion in Complex Real
World Environments for Robot Manipulation. arXiv: 2410.23643.

Anderson, John R. 1983. The architecture of cognition. Harvard University Press.

Athalye, Ashay, Nishanth Kumar, Tom Silver, Yichao Liang, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. 2024. “Predicate Invention from Pixels via Pretrained Vision-
Language Models.” In Workshop on Planning in the Era of LLMs (LM4Plan) @ AAAI
2025.

Bacchus, Fahiem, and Qiang Yang. 1994. “Downward Refinement and the Efficiency
of Hierarchical Problem Solving.” Artificial Intelligence 71:43–100.

Barry, Jennifer L., Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2011. “DetH*:
approximate Hierarchical Solution of Large Markov Decision Processes.” In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).

Brown, Noam, and Tuomas Sandholm. 2019. “Superhuman AI for multiplayer poker.”
Science 365 (6456): 885–890.

Coulom, Rémi. 2006. “Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search.” In Computers and Games.

Curtis, Aidan, Xiaolin Fang, Leslie Pack Kaelbling, Tomás Lozano-Pérez, and Cae-
lan Reed Garrett. 2022. “Long-Horizon Manipulation of Unknown Objects via Task
and Motion Planning with Estimated Affordances.” In Proc. of The International
Conference in Robotics and Automation (ICRA).

Ellis, Kevin, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya
Pozo, Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. 2023. “Dream-
Coder: growing generalizable, interpretable knowledge with wake–sleep Bayesian
program learning.” Philosophical Transactions of the Royal Society A 381 (2251).

Fang, Xiaolin, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2024. “Embodied
Uncertainty-Aware Object Segmentation.” In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

https://arxiv.org/abs/2410.23643


i
i

“paper_mit” — 2025/3/23 — 16:22 — page 46 — #46 i
i

i
i

i
i

46 Chapter 1

Garrett, Caelan Reed, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver,
Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2021. “Integrated Task and Motion
Planning.” Annual review of control, robotics, and autonomous systems 4.

Garrett, Caelan Reed, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2018.
“Sampling-based methods for factored task and motion planning.” The International
Journal of Robotics Research (IJRR).

Garrett, Caelan Reed, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2020. “PDDL-
Stream: Integrating symbolic planners and blackbox samplers via optimistic adap-
tive planning.” In International Conference on Automated Planning and Scheduling
(ICAPS).

Garrett, Caelan Reed, Chris Paxton, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and
Dieter Fox. 2020. “Online Replanning in Belief Space for Partially Observable Task and
Motion Problems.” In International Conference on Robotics and Automation (ICRA).

Geffner, Hector, and Nir Lipovetzky. 2012. “Width and serialization of classical
planning problems.” In European Conference on Artificial Intelligence (ECAI).

Gehring, Clement, Masataro Asai, Rohan Chitnis, Tom Silver, Leslie Pack Kaelbling,
Shirin Sohrabi, and Michael Katz. 2022. “Reinforcement Learning for Classical Plan-
ning: Viewing Heuristics as Dense Reward Generators.” In International Conference
on Automated Planning and Scheduling (ICAPS).

Ghallab, Malik, Dana Nau, and Paolo Traverso. 2004. Automated Planning: Theory and
Practice. Morgan Kaufmann.

Ha, David, and Jürgen Schmidhuber. 2018. “Recurrent World Models Facilitate Policy
Evolution.” In Advances in Neural Information Processing Systems (NeurIPS).

Holladay, Rachel, Tomás Lozano-Pérez, and Alberto Rodriguez. 2023. “Robust Plan-
ning for Multi-Stage Forceful Manipulation.” The International Journal of Robotics
Research (IJRR).

Kaelbling, Leslie Pack, Alex Licari LaGrassa, and Tomás Lozano-Pérez. 2021. Speci-
fying and achieving goals in open uncertain robot-manipulation domains. arXiv: 2112
.11199.

Kaelbling, Leslie Pack, and Tomás Lozano-Pérez. 2011. “Hierarchical Task and Motion
Planning in the Now.” In IEEE Conference on Robotics and Automation (ICRA).

Kahneman, Daniel. 2011. Thinking, Fast and Slow. New York: Farrar, Straus / Giroux.

Kearns, Michael, Y. Mansour, and A. Ng. 1999. “A Sparse Sampling Algorithm
for Near-Optimal Planning in Large Markov Decision Processes.” Machine Learning
49:193–208.

Kim, Beomjoon, and Luke Shimanuki. 2019. “Learning value functions with relational
state representations for guiding task-and-motion planning.” Conference on Robot
Learning (CoRL).

Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, et al. 2023. “Segment Anything.” In 2023 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV).

https://arxiv.org/abs/2112.11199
https://arxiv.org/abs/2112.11199


i
i

“paper_mit” — 2025/3/23 — 16:22 — page 47 — #47 i
i

i
i

i
i

Bibliography 47

Konidaris, George, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2018. “From
skills to symbols: Learning symbolic representations for abstract high-level planning.”
Journal of Artificial Intelligence Research (JAIR) 61:215–289.

Kumar, Nishanth, Tom Silver, Willie McClinton, Linfeng Zhao, Stephen Proulx, Tomás
Lozano-Pérez, Leslie Pack Kaelbling, and Jennifer Barry. 2024. “Practice Makes Per-
fect: Planning to Learn Skill Parameter Policies.” In Robotics: Science and Systems
(RSS).

Kurutach, Thanard, Aviv Tamar, Ge Yang, Stuart Russell, and Pieter Abbeel. 2018.
Learning Plannable Representations with Causal InfoGAN. arXiv: 1807.09341.

Lang, Tobias, Marc Toussaint, and Kristian Kersting. 2012. “Exploration in rela-
tional domains for model-based reinforcement learning.” Journal of Machine Learning
Research (JMLR) 13 (1): 3725–3768.

Levihn, Martin, Leslie Pack Kaelbling, Tomás Lozano-Pérez, and Mike Stilman. 2013.
“Foresight and Reconsideration in Hierarchical Planning and Execution.” In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Lin, Chu-Cheng, Aaron Jaech, Xin Li, Matthew R. Gormley, and Jason Eisner. 2021.
“Limitations of Autoregressive Models and Their Alternatives.” In Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics.

Lin, Kevin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette
Bohg. 2023. “Text2Motion: From natural language instructions to feasible plans.”
Autonomous Robots (November).

Liu, Yuyao, Jiayuan Mao, Joshua Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. 2024. “One-Shot Manipulation Strategy Learning by Making Contact
Analogies.” In CoRL Workshop on Learning Effective Abstractions for Planning.

Mandlekar, Ajay, Caelan Reed Garrett, Danfei Xu, and Dieter Fox. 2023. “Human-in-
the-Loop Task and Motion Planning for Imitation Learning.” In Conference on Robot
Learning (CoRL).

Mao, Jiayuan, Tomás Lozano-Pérez, Joshua B. Tenenbaum, and Leslie Pack Kael-
bling. 2022. “PDSketch: Integrated Domain Programming, Learning, and Planning.”
In Advances in Neural Information and Processing Systems (NeurIPS).

Mao, Jiayuan, Tomás Lozano-Pérez, Joshua B. Tenenbaum, and Leslie Pack Kaelbling.
2023. “Learning Resuable Manipulation Strategies.” In Conference on Robot Learning
(CoRL).

Mao, Jiayuan, Joshua B. Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
2024. “Hybrid Declarative-Imperative Representations for Hybrid Discrete-Continuous
Decision-Making.” In Workshop on the Algorithmic Foundations of Robotics (WAFR).

Mendez, Jorge A., Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2023. “Embodied
Lifelong Learning for Task and Motion Planning.” In Conference on Robot Learning
(CoRL).

https://arxiv.org/abs/1807.09341


i
i

“paper_mit” — 2025/3/23 — 16:22 — page 48 — #48 i
i

i
i

i
i

48 Chapter 1

Merlin, Max, Shane Parr, Neev Parikh, Sergio Orozco, Vedant Gupta, Eric Rosen, and
George Dimitri Konidaris. 2024. “Robot Task Planning Under Local Observability.” In
IEEE International Conference on Robotics and Automation (ICRA).

OpenAI. 2024a. GPT-4 Technical Report. arXiv: 2303.08774.

OpenAI. 2024b. Sora: Creating video from text. https://openai.com/sora.

Oquab, Maxime, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, et al. 2024. “DINOv2: Learning Robust Visual
Features without Supervision.” Transactions on Machine Learning Research. ISSN:
2835-8856.

Partee, Barbara H. 1984. “Compositionality.” In Varieties of Formal Semantics: Pro-
ceedings of the Fourth Amsterdam Colloquium, edited by Fred Landman and Frank
Veltman authou. Foris.

Pasula, Hanna M, Luke S Zettlemoyer, and Leslie Pack Kaelbling. 2007. “Learning
symbolic models of stochastic domains.” Journal of Artificial Intelligence Research
(JAIR) 29:309–352.

Platt, Robert, Russell Tedrake, Leslie Kaelbling, and Tomás Lozano-Pérez. 2010.
“Belief space planning assuming maximum likelihood observations.” In Robotics:
Science and Systems (RSS).

Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, et al. 2021. “Learning Transferable Visual Models From
Natural Language Supervision.” In International Conference on Machine Learning
(ICML).

Russell, Stuart, and Eric Wefald. 1991. “Principles of metareasoning.” Artificial
intelligence 49 (1-3): 361–395.

Sacerdoti, Earl D. 1974. “Planning in a hierarchy of abstraction spaces.” Artificial
intelligence 5 (2): 115–135.

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, et al. 2020. “Mastering Atari, Go, Chess and Shogi
by Planning with a Learned Model.” Nature 588 (7839): 604–609.

Shah, Dhruv, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black, Noriaki
Hirose, and Sergey Levine. 2023. “ViNT: A Foundation Model for Visual Navigation.”
In Conference on Robot Learning (CoRL).

Shen, William, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kaelbling, and Phillip
Isola. 2023. “Distilled Feature Fields Enable Few-Shot Language-Guided Manipula-
tion.” In Conference on Robot Learning (CoRL).

Silver, Tom, Ashay Athalye, Joshua B. Tenenbaum, Tomás Lozano-Pérez, and Leslie
Pack Kaelbling. 2022. “Learning Neuro-Symbolic Skills for Bilevel Planning.” In
Conference on Robot Learning (CoRL).

Silver, Tom, Rohan Chitnis, Aidan Curtis, Joshua Tenenbaum, Tomás Lozano-Pérez,
and Leslie Pack Kaelbling. 2021. “Planning with Learned Object Importance in Large
Problem Instances using Graph Neural Networks.” In AAAI Conference on Artificial
Intelligence (AAAI).

https://arxiv.org/abs/2303.08774
https://openai.com/sora


i
i

“paper_mit” — 2025/3/23 — 16:22 — page 49 — #49 i
i

i
i

i
i

Bibliography 49

Silver, Tom, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomás Lozano-Pérez,
Leslie Pack Kaelbling, and Joshua Tenenbaum. 2023. “Predicate Invention for Bilevel
Planning.” In AAAI Conference on Artificial Intelligence (AAAI).

Spelke, Elizabeth S., and Katherine D. Kinzler. 2007. “Core knowledge.” Developmen-
tal Science 10 (1): 89–96.

Sutton, Richard S. 2019. The Bitter Lesson. http://www.incompleteideas.net/IncIdeas
/BitterLesson.html.

Toussaint, Marc. 2015. “Logic-Geometric Programming: An Optimization-Based
Approach to Combined Task and Motion Planning.” In International Joint Conference
on Artificial Intelligence (IJCAI).

Wang, Yanwei, Tsun-Hsuan Wang, Jiayuan Mao, Michael Hagenow, and Julie Shah.
2024. “Grounding Language Plans in Demonstrations Through Counterfactual Pertur-
bations.” In International Conference on Learning Representations (ICLR).

Wang, Zi, Caelan Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2021.
“Learning compositional models of robot skills for task and motion planning.” The
International Journal of Robotics Research (IJRR) 40 (6): 866–894.

Wong, Lio, Jiayuan Mao, Pratyusha Sharma, Zachary S. Siegel, Jiahai Feng, Noa
Korneev, Joshua B. Tenenbaum, and Jacob Andreas. 2024. “Learning Adaptive Plan-
ning Representations with Natural Language Guidance.” In International Conference
on Learning Representations (ICLR).

Yang, Zhutian, Caelan Garrett, Dieter Fox, Tomás Lozano-Pérez, and Leslie Pack Kael-
bling. 2025. “Guiding Long-Horizon Task and Motion Planning with Vision Language
Models.” In ICRA.

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

	1 Rationally Engineering Rational Robots
	Leslie Pack Kaelbling and Tomás Lozano-Pérez
	1.1 Introduction
	1.1.1 Engineering Intelligent Robots
	1.1.2 Generality and its Discontents
	1.1.3 Modular, Compositional, Rational Systems
	1.1.4 Meeting Our Design Criteria

	1.2 Phases of Design and Implementation
	1.2.1 Mind Design
	1.2.2 Learning in the Factory
	1.2.3 Learning on the Job

	1.3 Mind Design for Rational Robots
	1.3.1 Compositionality and Rationality
	1.3.2 Modularity

	1.4 Long-horizon Decision-making
	1.4.1 World Models with Compositional Structure
	1.4.2 Planning Algorithms
	1.4.3 Temporal Hierarchy
	1.4.4 Handling Uncertainty

	1.5 Learning World Models for Decision-making
	1.5.1 Learning Causal Action Models
	1.5.2 Incremental Learning Cycle
	1.5.3 Leveraging Pretrained Models
	1.5.4 Learning World Models under Partial Observability

	1.6 Meta-Cognition
	1.6.1 Learning to Select Actions Efficiently
	1.6.2 Dynamic Abstraction

	1.7 Conclusions



