
Effective, interpretable algorithms for curiosity
automatically discovered by evolutionary search

Martin Schneider∗1, Ferran Alet∗1, Tomás Lozano-Pérez1, Leslie Pack Kaelbling1

Abstract— We take the hypothesis that curiosity is a mech-
anism found by evolution that encourages meaningful explo-
ration early in an agent’s life in order to expose it to experiences
that enable it to obtain high rewards over the course of
its lifetime. We formulate the problem of generating curious
behavior as one of meta-learning: an outer loop will search
over a space of curiosity algorithms that dynamically adapt the
agent’s reward signal, and an inner loop will perform standard
reinforcement learning using the adapted reward signal. These
meta-learned algorithms are pieces of code similar to those
designed by humans in ML papers. Our rich language of
programs combines neural networks with other building blocks
such as buffers, nearest-neighbor modules and custom loss
functions. We find two novel curiosity algorithms that perform
on par or better than human-designed published curiosity
algorithms in domains as disparate as grid navigation with
image input, acrobot, lunar lander, MuJoCo ant and MuJoCo
hopper. Interestingly both algorithms, which we call FAST
(Fast Action Space Transition) and Cycle-consistency intrinsic
motivation, have interpretable functionalities and, to the best of
our knowledge, had not been proposed before. Finally, altohugh
most of the intrinsic motivation literature focuses on purely
intrinsic reward, we show that this needs to be combined
with extrinsic reward for meaningful performance in many
environments and describe a simple way to combine them
automatically discovered by our search.

I. INTRODUCTION

Note: this work complements [1], where we showed how
to meta-learn curiosity algorithms and demonstrated why this
leads to greater generalization capabilities than meta-learning
neural representations. In this work we focus instead on
analyzing the product of our search: we explain in detail
the algorithms discovered by our search, in a similar way a
human would introduce their own algorithms.

When a reinforcement learning agent is learning to behave,
it is critical that it both explores its domain and exploits its
rewards effectively. In very simple problems, it is possible to
solve the problem optimally, using techniques of Bayesian
decision theory [2]. However, these techniques do not scale
well and are not effectively applicable to the problems
addressable by modern deep RL, with large state and action
spaces and sparse rewards. This difficulty has left researchers
the task of designing good exploration strategies for RL
systems in complex environments. One way to think of
this problem is in terms of curiosity or intrisic motivation:
constructing reward signals that augment or even replace

∗ equal contribution
1 Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology {martinfs,alet,tlp,lpk}@mit.edu

Fig. 1. Our RL agent is augmented with a curiosity module, obtained
by meta-learning over a complex space of programs, which computes a
pseudo-reward r̂ at every time step.

the extrinsic reward from the domain, which induce the
RL agent to explore their domain in a way that results in
effective longer-term learning and behavior [3], [4], [5]. The
primary difficulty with this approach is that researchers are
hand-designing these strategies: it is difficult for humans to
systematically consider the space of strategies or to tailor
strategies for the distribution of environments an agent might
be expected to face.

We take inspiration from the curious behavior observed
in young humans and other animals and hypothesize that
curiosity is a mechanism found by evolution that encourages
meaningful exploration early in agent’s life. This exploration
exposes the agent to experiences that enable it to learn
to obtain high rewards over the course of its lifetime. We
propose to formulate the problem of generating curious
behavior as one of meta-learning: an outer loop, operating at
“evolutionary” scale will search over a space of algorithms
for generating curious behavior by dynamically adapting the
agent’s reward signal, and an inner loop will perform stan-
dard reinforcement learning using the adapted reward signal.
This process is illustrated in figure 1; note that the aggregate
agent, outlined in gray, has the standard interface of an RL
agent. The inner RL algorithm is continually adapting to its
input stream of states and rewards, attempting to learn a
policy that optimizes the discounted sum of proxy rewards
∑k≥0 γk r̂t+k. The outer “evolutionary” search is attempting
to find a program for the curiosity module, so as to optimize
the agent’s lifetime return ∑

T
t=0 rt , or another global objective

like the mean performance on the last few trials.
In this meta-learning setting, our objective is to find a

curiosity module that works well given a distribution of

environments from which we can sample at meta-learning
time. Meta-RL has been widely explored recently, in some
cases with a focus on reducing the amount of experience
needed by initializing the RL algorithm well [6], [7] and,
in others, for efficient exploration [8], [9]. The environment
distributions in these cases have still been relatively low-
diversity, mostly limited to variations of the same task,
such as exploring different mazes or navigating terrains
of different slopes. We would like to discover curiosity
mechanisms that can generalize across a much broader
distribution of environments, even those with different state
and action spaces: from image-based games, to joint-based
robotic control tasks. To do that, we perform meta-learning
in a rich, combinatorial, open-ended space of programs.

II. META-LEARNING CURIOSITY ALGORITHMS

A. Meta-learning problem formulation

Let us assume we have an agent equipped with an RL
algorithm A (such as DQN or PPO, with all hyperparameters
specified), which receives states and rewards from and
outputs actions to an environment E , generating a stream of
experienced transitions e(A ;E)t = (st ,at ,rt ,st+1). The agent
continually learns a policy π(t) : st → at , which will change
in time as described by algorithm A ; so π(t) = A (e1:t−1)
and thus at ∼ A (e1:t−1)(st). Although this need not be
the case, we can think of A as an algorithm that tries to
maximize the discounted reward ∑i γ irt+i,γ < 1 and that,
at any time-step t, always takes the greedy action that
maximizes its estimated expected discounted reward.

To add exploration to this policy, we include a curiosity
module C that has access to the stream of state transitions
et experienced by the agent and that, at every time-step t,
outputs a proxy reward r̂t . We connect this module so that
the original RL agent receives these modified rewards, thus
observing e(A ,C ;E)t = (st ,at , r̂t =C (e1:t−1),st+1), without
having access to the original rt . Now, even though the inner
RL algorithm acts in a purely exploitative manner with re-
spect to r̂, it may efficiently explore in the outer environment.

Our overall goal is to design a curiosity module C that
induces the agent to maximize ∑

T
t=0 rt , for some number

of total time-steps T or some other global goal, like final
episode performance. In an episodic problem, T will span
many episodes. More formally, given a single environment
E , RL algorithm A , and curiosity module C , we can see the
triplet (environment, curiosity module, agent) as a dynamical
system that induces state transitions for the environment, and
learning updates for the curiosity module and the agent. Our
objective is to find C that maximizes the expected original
reward obtained by the composite system in the environment.
Note that the expectation is over two different distributions
at different time scales: there is an “outer” expectation over
environments E , and in “inner” expectation over the rewards
received by the composite system in that environment, so our
final objective is:

max
C

[
EE

[
Ert∼e(A ,C ;E)

[
T

∑
t=0

rt

]]]
.

B. Programs for curiosity

In science and computing, mathematical language has
been very successful in describing varied phenomena and
powerful algorithms with short descriptions. Therefore, in
order to obtain curiosity modules that can generalize over a
very broad range of tasks and that are sophisticated enough
to provide exploration guidance over very long horizons, we
describe them in terms of general programs in a domain-
specific language. Algorithms in this language will map
a history of (st ,st+1,at ,rt) tuples into a proxy reward r̂t .
Inspired by human-designed systems that compute and use
intrinsic rewards, and to simplify the search, we decompose
the curiosity module into two components: the first, I, outputs
an intrinsic reward value it based on the current experienced
transition (st ,at ,st+1) (and past transitions (s1:t−1,a1:t−1)
indirectly through its memory); the second, χ , takes the
current time-step t, the actual reward rt , and the intrinsic
reward it (and, if it chooses to store them, their histories)
and combines them to yield the proxy reward r̂t . To ease
generalization across different timescales, in practice, before
feeding t into χ we normalize it by the total length of the
agent’s lifetime, T .

Both programs consist of a directed acyclic graph (DAG)
of modules with polymorphically typed inputs and outputs.
As shown in figure 2, there are four classes of modules: In-
put modules (shown in blue), drawn from the set {st ,at ,st+1}
for the I component and from the set {it ,rt} for the χ com-
ponent. They have no inputs, and their outputs have the type
corresponding to the types of states and actions in whatever
domain they are applied to, or the reals numbers for rewards.
Buffer and parameter modules (shown in gray) of two
kinds: FIFO queues that provide as output a finite list of the
k most recent inputs, and neural network weights initialized
at random at the start of the program and which may (pink
border) or may not get updated via back-propagation depend-
ing on the computation graph. Functional modules (shown
in white), which compute output values given the inputs.

A single node in the DAG is designated as the output
node (shown in green): the output of this node is considered
to be the output of the entire program, but it need not
be a leaf node of the DAG. On each call to a program
(corresponding to one time-step of the system) the current
input values and parameter values are propagated through
the functional modules, and the output node’s output is
given to the RL algorithm. Before the call terminates, the
FIFO buffers are updated and the adjustable parameters are
updated via gradient descent using the Adam optimizer [10].
Most operations are differentiable and thus able to propagate
gradient backwards. Some operations are not differentiable
such as buffers (to avoid backpropagating through time) and
“Detach” whose purpose is stopping the gradient from flow-
ing back. In practice, we have multiple copies of the same
agent running at the same time, with both a shared policy and
shared curiosity module. Thus, we execute multiple reward
predictions on a batch and then update on a batch.

Programs representing several published designs for cu-

Fig. 2. Example diagrams of published algorithms covered by our language
(larger figures in the appendix). The green box represents the output of the
intrinsic curiosity function, the pink box is the loss to be minimized. Pink
arcs represent paths and networks along which gradients flow back from
the minimizer to update parameters.

riosity modules that perform internal gradient descent, in-
cluding inverse features [3], random network distillation
(RND) [4], and self-supervised exploration via disagree-
ment [11], are shown in figure 2 (and bigger versions can
be found in appendix B). We can also represent algorithms
similar to novelty search [12] and EX2 [13], which include
buffers and nearest neighbor regression modules. Details on
the data types and module library are given in appendix A.

A crucial, and possibly somewhat counter-intuitive, aspect
of these programs is their use of neural network weight
updates via gradient descent as a form of memory. In the
parameter update step, all adjustable parameters are decre-
mented by the gradient of the sum of the outputs of the loss
modules, with respect to the parameters. This type of update
allows the program to, for example, learn to make some types
of predictions, online, and use the quality of those predictions
in a state to modulate the proxy reward for visiting that state
(as is done, for example, in RND).

Key to our program search are polymorphic data types:
the inputs and outputs to each module are typed, but the
instantiation of some types, and thus of some operations,
depends on the environment. We have four types: reals R,
state space of the given environment S, action space of
the given environment A and feature space F, used for
intermediate computations and always set to R32 in our cur-
rent implementation. For example, a neural network module
going from S to F will be instantiated as a convolutional
neural network if S is an image and as a fully connected
neural network of the appropriate dimension if S is a vector.
This facility means that the same curiosity program can be
applied, independent of whether states are represented as
images or vectors, or whether the actions are discrete or
continuous, or the dimensionality of either. This type of
abstraction enables our meta-learning approach to discover
curiosity modules that generalize radically, applying not just
to new tasks, but to tasks with substantially different input
and output spaces than the tasks they were trained on.

C. Summary of the experiments

In this section we review how we searched over curiosity
algorithms and how we sped up the search. For more

information, please refer to appendix C on how we search
in this large space and appendix D about the details of the
experiments. Our code to search and execute the algorithms,
which can take in any OpenAI gym environment [14],
can be found at https://github.com/mfranzs/
meta-learning-curiosity-algorithms.

We first generated all valid intrinsic curiosity programs
with at most 7 operations, of which there are 52,000. Then,
we evaluated the most promising 26,000, according to a
learned predictor, on a task of exploring a grid, where we
evaluated the total number of distinct states covered by
each algorithm. We found that almost all programs perform
about the same, but a small fraction of 0.5% of programs
perform statistically significantly better, see fig. 10 in the
appendix. We then picked approximately the top 10% of
programs on grid world and evaluated them on two much
more complex tasks (acrobot and lunar lander) involving an
order of magnitude more learning steps and vector inputs
instead of image inputs. Surprisingly, we found (fig 11)
that almost all programs that had statistically significant
performance on grid world also had good performance on
both of these “test” domains. In other words, programs found
on a single task generalized radically to very different tasks.

Finally, we compared the performance of the top 16 algo-
rithms against simple baselines (constant intrinsic rewards of
0,1,-1 and gaussian noise) and the 3 published algorithms of
figure B on two MuJoCo tasks: ant and hopper. We found
that our meta-learned algorithms performed statistically sig-
nificantly better than baseline algorithms and statistically
equivalent to published algorithms. Moreover, they also per-
formed either statistically equivalently or better in the meta-
training task (grid navigation) and the two previous meta-test
task (acrobot and lunar lander). When inspecting those top
programs, we found that they were all minor variations of
two different algorithms which, to the best of our knowledge,
have not been previously proposed. We discuss them in the
following sections.

III. DISCOVERED CURIOSITY ALGORITHMS

A. Fast Action Space Transition (FAST) intrinsic motivation

13 of the top 16 algorithms in the grid navigation task
were versions of the same algorithm; we show one of them
(the best in our search) in figure 3. The algorithm trains a
single neural network (a CNN or MLP depending on the type
of state) to predict the action from st+1 and then compares
its predictions based on st+1 with its predictions based on
st , generating a high intrinsic reward when the difference is
large. The action prediction loss module either computes a
softmax followed by NLL loss or appends zeros to the action
to match dimensions and applies MSE loss, depending on
the type of the action space. In other words, the network
predicting the action is learning to imitate the policy (or
the inverse policy if predicting from st+1), since it does not
have direct access to the neural network policy of the RL
agent. We hypothesize that the reward dynamics vary over
the state landscape based on the novelty of a given state, in
the form of two phases. First, getting to a novel region of the

https://github.com/mfranzs/meta-learning-curiosity-algorithms
https://github.com/mfranzs/meta-learning-curiosity-algorithms

Fig. 3. Fast Action-Space Transition (FAST): top-performing intrinsic
curiosity algorithm discovered in our phase 1 search. A more formal
description is given in equation 1.

space will be rewarded by noise from a poorly-trained policy-
mimicking model. Second,taking actions on consecutive
steps in regions where we have a correct policy-mimicking
model will also yield reward. We call this algorithm FAST
(Fast Action Space Transition) intrinsic motivation, because
it rewards taking big jumps in a space that predicts the action.
In equations:

FAST ACTION SPACE TRANSITION (FAST)

it =||NNθ (st+1)−NNθ (st)||2
min

θ
L (NNθ (st+1),a(t)) (1)

As mentioned, we can also set the loss to predict the action
from the current state; i.e., minθ L (NNθ (st),a(t)).

To the best of our knowledge, despite its simplicity (or
maybe because of it) the algorithm represented by this
program has not been proposed in the literature before.

B. Cycle-consistency intrinsic motivation

Fig. 4. Cycle-consistency intrinsic motivation: 3 of the top 16 programs
on grid world are variants of this program. A more formal description is
given in equation 2.

The other 3 algorithms of the top 16 in the grid navigation
task were variations of a much more complex algorithm
that we depict in figure 4. The algorithm combines several
concepts seen in the literature, such as an untrained network
like RND [4] and predicting another state in feature space

like [3], [11], but also includes weight sharing between both
predictions, which makes the algorithm hard to interpret at
first sight. However, one can give meaning to the role of
all 3 neural networks by considering what their role should
be in order to minimize the loss. To do so, let us name
the networks: θ{1} (as labeled in the figure) as rθ1 (for
random embedding), θ{2} as bθ2 (for backwards) and θ{3}
as f rθ3 (for forward and random embedding) and look at the
algorithm in equation form:

BACK AND FORTH INTRINSIC MOTIVATION

it =‖bθ2

(
f rθ3(st)

)
−bθ2

(
f rθ3 (st+1)

)
‖

θ1 is kept at its random initialization

min
θ2
‖bθ2

(
f rθ3(st)

)
− rθ1(st)‖+‖bθ2

(
f rθ3(st+1)

)
− f rθ3(st)‖

min
θ3
‖bθ2

(
f rθ3(st)

)
− rθ1(st)‖ (2)

We can see that rθ1 will indeed be a random embedding be-
cause the network is randomly initialized and is not trained.
Then, we observe that the second term in the loss for θ2,
which does not involve θ3 and thus θ2 has to minimize alone,
is ‖bθ2

(
f rθ3(st+1)

)
− f rθ3(st)‖. In this term, bθ2 receives a

transformation of st+1 and has to make it very similar to
the same transformation applied to st ; therefore, this term is
similar to cycle-consistency found in some other parts of
machine learning [15] and bθ2 must act like a backward
model. Finally, looking at the minimization of θ3 receives
the original st and has to output a vector such that the
backward model will bring it close to the random embedding
of st . Therefore θ3 must learn a forward model composed
with the random embedding of θ1. Finally, we see that the
algorithm outputs ‖bθ2

(
f rθ3(st)

)
−bθ2

(
f rθ3 (st+1)

)
‖, going

forward and backward for both st+1 and st and comparing
the difference. In summary, this distance combines errors in
the cycle-consistency of predictions (which will be higher
in unvisited parts of the state) with distance in the random
embedding space between s(t) and s(t +1), i.e. moving to a
very different state.

C. Combining intrinsic and extrinsic reward

Many intrinsic curiosity works only endow the agent
with intrinsic motivation, disregarding external reward, and
show that this leads to meaningful behavior. This behavior
maximizes the overall objective for tasks where the goal is
purely exploratory (like Mario or our grid navigation), but
not for more focused tasks such as running to a particular
location. Similarly, in lunar lander and acrobot, training
an agent just on intrinsic motivation leads to very poor
performance; this is because the environment finishes when
the agent reaches the goal state (bringing the arm up), which
stops the intrinsic reward, encouraging the agent to never
reach the goal.

We therefore meta-learned a reward combiner that took the
stream of all intrinsic rewards (coming from a meta-learned
algorithm, such as the ones discussed in the previous two
sections) and the stream of all extrinsic rewards rt , along

with a number indicating how far along its learning life the
agent is, i.e. t/T with T being the total number of time-
steps in the entire life of the agent, possibly over many
episodes. The combiner then outputs a single number, the
reward r̂t for the policy to optimize. Our reward combiner
was developed in lunar lander (the simplest environment
with meaningful extrinsic reward) based on the best program
among a preliminary set of 16,000 programs (which resem-
bled Random Network Distillation, its computation graph is
shown in appendix E). Among a set of 2,500 candidates (with
5 or less operations) the best reward combiner discovered
by our search was r̂t =

(1+it−t/T)·it+t/T ·rt
1+it

. When t = 0, this

evaluates to it . When t = T , this evaluates to i2+r
1+i , which is

r when 0≤ i << 1. Thus, the combiner roughly interpolates
from purely intrinsic reward to purely extrinsic reward, if the
intrinsic reward has started to drop down to 0 by the end. In
future work, we hope to co-adapt the search for intrinsic
reward programs and combiners as well as find multiple
reward combiners. More details on the search can be found
in appendix A.2.

IV. CONCLUSIONS

In this work, we proposed to meta-learn algorithms and
show that by transferring programs we can generalize be-
tween tasks much more varied than previously possible in
meta-RL, even between those with different input or output
spaces. We showed that the algorithms resulting from this
search can be interpreted as doing something meaningful,
and introduced two algorithms: Fast Action Space Transition
(FAST) and Cycle-consistency instrinsic motivation. Our rel-
atively modest compute (2 GPU-weeks) and a simple search
method restricted us to a medium-sized search space, but we
expect that future work could search over significantly bigger
spaces. It thus may be possible to automatically search for
new algorithms from even more fundamental building blocks.

REFERENCES

[1] F. Alet, M. F. Schneider, T. Lozano-Perez, and L. P. Kaelbling,
“Meta-learning curiosity algorithms,” in International Conference
on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=BygdyxHFDS

[2] M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar, “Bayesian
reinforcement learning: A survey,” Foundations and Trends in Machine
Learning, vol. 8, no. 5–6, 2015.

[3] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 16–17.

[4] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” arXiv preprint arXiv:1810.12894, 2018.

[5] P.-Y. Oudeyer, “Computational theories of curiosity-driven learning,”
arXiv preprint arXiv:1802.10546, 2018.

[6] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” arXiv preprint arXiv:1703.03400,
2017.

[7] I. Clavera, A. Nagabandi, R. S. Fearing, P. Abbeel, S. Levine, and
C. Finn, “Learning to adapt: Meta-learning for model-based control,”
in International Conference on Learning Representations, 2019.

[8] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “Rl2: Fast reinforcement learning via slow reinforcement
learning,” arXiv preprint arXiv:1611.02779, 2016.

[9] J. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Leibo, R. Munos,
C. Blundell, D. Kumaran, and M. Botivnick, “Learning to reinforce-
ment learn. arxiv 1611.05763,” 2017.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2014.

[11] D. Pathak, D. Gandhi, and A. Gupta, “Self-supervised exploration via
disagreement,” arXiv preprint arXiv:1906.04161, 2019.

[12] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty.” in ALIFE, 2008, pp. 329–
336.

[13] J. Fu, J. Co-Reyes, and S. Levine, “Ex2: Exploration with exemplar
models for deep reinforcement learning,” in Advances in Neural
Information Processing Systems, 2017, pp. 2577–2587.

[14] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[15] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial networks,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2223–2232.

[16] F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Automated Machine
Learning: Methods, Systems, Challenges. Springer, 2018, in press,
available at http://automl.org/book.

[17] Z. Karnin, T. Koren, and O. Somekh, “Almost optimal exploration
in multi-armed bandits,” in International Conference on Machine
Learning, 2013, pp. 1238–1246.

[18] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identifica-
tion and hyperparameter optimization,” in Artificial Intelligence and
Statistics, 2016, pp. 240–248.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[20] I. Kostrikov, “Pytorch implementations of reinforcement learning
algorithms,” https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail,
2018.

[21] A. Paszke, S. Gross, and A. Lerer, “Automatic differentiation in
PyTorch,” in International Conference on Learning Representations,
2017.

[22] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic grid-
world environment for openai gym,” https://github.com/maximecb/
gym-minigrid, 2018.

[23] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[24] R. K. Srivastava, B. R. Steunebrink, and J. Schmidhuber, “First
experiments with powerplay,” Neural Networks, vol. 41, pp. 130–136,
2013.

[25] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction

https://openreview.net/forum?id=BygdyxHFDS
https://openreview.net/forum?id=BygdyxHFDS
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

and intrinsic motivation,” in Advances in neural information process-
ing systems, 2016, pp. 3675–3683.

[26] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic
goal generation for reinforcement learning agents,” in Proceedings
of the 35th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, J. Dy and
A. Krause, Eds., vol. 80. Stockholmsmssan, Stockholm Sweden:
PMLR, 10–15 Jul 2018, pp. 1515–1528. [Online]. Available:
http://proceedings.mlr.press/v80/florensa18a.html

[27] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation
systems for autonomous mental development,” IEEE transactions on
evolutionary computation, vol. 11, no. 2, pp. 265–286, 2007.

[28] J. Schmidhuber, “Driven by compression progress: A simple principle
explains essential aspects of subjective beauty, novelty, surprise, inter-
estingness, attention, curiosity, creativity, art, science, music, jokes,”
in Workshop on anticipatory behavior in adaptive learning systems.
Springer, 2008, pp. 48–76.

[29] M. G. Azar, B. Piot, B. A. Pires, J.-B. Grill, F. Altché, and R. Munos,
“World discovery models,” arXiv preprint arXiv:1902.07685, 2019.

[30] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all
you need: Learning skills without a reward function,” arXiv preprint
arXiv:1802.06070, 2018.

[31] C. Florensa, Y. Duan, and P. Abbeel, “Stochastic neural networks for
hierarchical reinforcement learning,” arXiv preprint arXiv:1704.03012,
2017.

[32] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves,
V. Mnih, R. Munos, D. Hassabis, O. Pietquin, et al., “Noisy networks
for exploration,” arXiv preprint arXiv:1706.10295, 2017.

[33] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, “# exploration: A study of
count-based exploration for deep reinforcement learning,” in Advances
in neural information processing systems, 2017, pp. 2753–2762.

[34] S. Forestier and P.-Y. Oudeyer, “Modular active curiosity-driven dis-
covery of tool use,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 3965–3972.

[35] A. A. Taı̈ga, W. Fedus, M. C. Machado, A. Courville, and M. G.
Bellemare, “Benchmarking bonus-based exploration methods on the
arcade learning environment,” arXiv preprint arXiv:1908.02388, 2019.

[36] B. C. Stadie, G. Yang, R. Houthooft, X. Chen, Y. Duan, Y. Wu,
P. Abbeel, and I. Sutskever, “Some considerations on learn-
ing to explore via meta-reinforcement learning,” arXiv preprint
arXiv:1803.01118, 2018.

[37] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-
reinforcement learning of structured exploration strategies,” in Ad-
vances in Neural Information Processing Systems, 2018, pp. 5302–
5311.

[38] Z. Zheng, J. Oh, and S. Singh, “On learning intrinsic rewards for policy
gradient methods,” in Advances in Neural Information Processing
Systems, 2018, pp. 4644–4654.

[39] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[40] A. Faust, A. Francis, and D. Mehta, “Evolving rewards to automate
reinforcement learning,” arXiv preprint arXiv:1905.07628, 2019.

[41] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[42] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[43] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” arXiv preprint arXiv:1808.05377, 2018.

[44] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
neural architecture search via parameter sharing,” arXiv preprint
arXiv:1802.03268, 2018.

[45] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hut-
ter, “Towards automatically-tuned neural networks,” in Workshop on
Automatic Machine Learning, 2016, pp. 58–65.

[46] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 8697–8710.

[47] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown,
“Satenstein: Automatically building local search sat solvers from com-
ponents,” in Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

[48] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and F. Hutter, “Efficient and robust automated
machine learning,” in Advances in Neural Information Processing
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc.,
2015, pp. 2962–2970. [Online]. Available: http://papers.nips.cc/paper/
5872-efficient-and-robust-automated-machine-learning.pdf

[49] S. Gonzalez and R. Miikkulainen, “Improved training speed, accuracy,
and data utilization through loss function optimization,” arXiv preprint
arXiv:1905.11528, 2019.

[50] ——, “Evolving loss functions with multivariate taylor polynomial
parameterizations,” 2020.

[51] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” arXiv preprint arXiv:1603.06560, 2016.

[52] J. Schmidhuber, “Evolutionary principles in self-referential learning, or
on learning how to learn: the meta-meta-... hook,” Ph.D. dissertation,
Technische Universität München, 1987.

[53] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[54] A. Gaier and D. Ha, “Weight agnostic neural networks,” arXiv preprint
arXiv:1906.04358, 2019.

[55] D. G. Wilson, S. Cussat-Blanc, H. Luga, and J. F. Miller, “Evolving
simple programs for playing atari games,” in Proceedings of the
Genetic and Evolutionary Computation Conference. ACM, 2018,
pp. 229–236.

[56] S. Kelly and M. I. Heywood, “Multi-task learning in atari video games
with emergent tangled program graphs,” in Proceedings of the Genetic
and Evolutionary Computation Conference. ACM, 2017, pp. 195–
202.

[57] T. Silver, K. R. Allen, A. K. Lew, L. P. Kaelbling, and J. Tenenbaum,
“Few-shot bayesian imitation learning with logic over programs,”
arXiv preprint arXiv:1904.06317, 2019.

[58] S. Bengio, Y. Bengio, and J. Cloutier, “On the search for new learning
rules for anns,” Neural Processing Letters, vol. 2, no. 4, pp. 26–30,
1995.

[59] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural optimizer
search with reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 459–468.

[60] S. Reed and N. De Freitas, “Neural programmer-interpreters,” arXiv
preprint arXiv:1511.06279, 2015.

[61] T. Pierrot, G. Ligner, S. Reed, O. Sigaud, N. Perrin, A. Laterre,
D. Kas, K. Beguir, and N. de Freitas, “Learning compositional neural
programs with recursive tree search and planning,” arXiv preprint
arXiv:1905.12941, 2019.

[62] F. Alet, T. Lozano-Perez, and L. P. Kaelbling, “Modular meta-
learning,” in Proceedings of The 2nd Conference on Robot Learning,
2018, pp. 856–868.

[63] F. Alet, E. Weng, T. Lozano-Perez, and L. Kaelbling, “Neural re-
lational inference with fast modular meta-learning,” in Advances in
Neural Information Processing Systems (NeurIPS) 32, 2019.

[64] S. Thrun and L. Pratt, Learning to learn. Springer Science & Business
Media, 1998.

[65] J. Clune, “Ai-gas: Ai-generating algorithms, an alternate paradigm
for producing general artificial intelligence,” arXiv preprint
arXiv:1905.10985, 2019.

[66] C. Finn, “Learning to learn with gradients,” Ph.D. dissertation,
EECS Department, University of California, Berkeley, Aug 2018.
[Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2018/EECS-2018-105.html

[67] Z. Xu, H. P. van Hasselt, and D. Silver, “Meta-gradient reinforcement
learning,” in Advances in neural information processing systems, 2018,
pp. 2396–2407.

[68] V. Veeriah, M. Hessel, Z. Xu, R. Lewis, J. Rajendran, J. Oh, H. van
Hasselt, D. Silver, and S. Singh, “Discovery of useful questions as
auxiliary tasks,” arXiv preprint arXiv:1909.04607, 2019.

[69] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu,
A. Pritzel, and D. Wierstra, “Pathnet: Evolution channels gradient
descent in super neural networks,” arXiv preprint arXiv:1701.08734,
2017.

[70] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” arXiv preprint arXiv:1606.04671, 2016.

http://proceedings.mlr.press/v80/florensa18a.html
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-105.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-105.html

[71] E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-mimic:
Deep multitask and transfer reinforcement learning,” arXiv preprint
arXiv:1511.06342, 2015.

[72] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta
learn fast: A new benchmark for generalization in rl,” arXiv preprint
arXiv:1804.03720, 2018.

[73] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, S. Levine,
and C. Finn, “Meta-world: A benchmark and evaluation for multi-
task and meta-reinforcement learning,” 2019. [Online]. Available:
https://github.com/rlworkgroup/metaworld

[74] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Paired open-
ended trailblazer (poet): Endlessly generating increasingly complex
and diverse learning environments and their solutions,” arXiv preprint
arXiv:1901.01753, 2019.

[75] R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski, O. J. Ho,
and P. Abbeel, “Evolved policy gradients,” in Advances in Neural
Information Processing Systems, 2018, pp. 5400–5409.

[76] L. Kirsch, S. van Steenkiste, and J. Schmidhuber, “Improving gen-
eralization in meta reinforcement learning using learned objectives,”
arXiv preprint arXiv:1910.04098, 2019.

APPENDIX

Acknowledgments

We thank Kelsey Allen, Peter Karkus, Kevin Smith, Josh
Tenenbaum and the rest of the Honda-CMM MIT team for
their insightful feedback. We thank Chris Lu for his idea on
what the algorithm in figure 4 is computing. We also want
to thank Bernadette Bucher, Chelsea Finn, Abhishek Gupta,
Deepak Pathak, Lerrel Pinto, Oleh Rybkin, Karl Schmeck-
peper and Joaquin Vanschoren for valuable conversations.
Finally, we also want to thank Maria Bauza and Tej Chajed
for their feedback on early drafts and Clement Gehring for
his help setting up the experiments.

We gratefully acknowledge support from NSF grants
1523767 and 1723381, AFOSR grant FA9550-17-1-0165,
ONR grant N00014-18-1-2847, the Honda Research Insti-
tute, SUTD Temasek Laboratories and the MIT Quest for
Intelligence. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material do not necessarily
reflect the views of our sponsors.

A. Details of our domain-specific language for curiosity
algorithms

We have the following types. Note that S and A get defined
differently for every environment.
• R: real numbers such as rt or the dot-product between

two vectors.
• R+: numbers guaranteed to be positive, such as the

distance between two vectors. The only difference to
our program search between R and R+ is in pruning
programs that can optimize objectives without looking
at the data. For R+ we check whether they can optimize
down to 0, for R we check whether they can optimize
to arbitrarily negative values.

• state space S: the environment state, such as a matrix of
pixels or a vector with robot joint values. The particular
form of this type is adapted to each environment.

• action space A: either a 1-hot description of the action
or the action itself. The particular form of this type is
adapted to each environment.

• feature-space F = R32: a space mostly useful to work
with neural network embeddings. For simplicity, we
only have a single feature space.

• List[X]: for each type we may also have a list of ele-
ments of that type. All operations that take a particular
type as input can also be applied to lists of elements
of that type by mapping the function to every element
in the list. Lists also support extra operations such as
average or variance.

https://github.com/rlworkgroup/metaworld

1) Curiosity operations:

Operation Input type(s) State Output type
Add R, R R
RunningNorm R R R
VariableAsBuffer X List[X] List[X]
NearestNeighborRegressor F, F List[F] F
SubtractOneTenth R R
NormalDistribution R
Subtract R, R R
Sqrt(Abs(x)) R R+

NN F,F→ F F, F ΘF,F→F F
NN F,F→ A F, F ΘF,F→A A
NN F→ A F ΘF→A A
NN A→ F A ΘA→F F
(C)NN S ΘS→F F
(C)NN, Detach S ΘS→F F
(C)NNEnsemble S 5xΘS→F List[F]
NN Ensemble F→ F F 5xΘF→F List[F]
NN Ensemble F,F→ F F, F 5xΘF,F→F List[F]
NN Ensemble F,A→ F F, A 5xΘA,F→F List[F]
MinimizeValue R Adam
L2Norm X R+

L2Distance X, X R
ActionSpaceLoss X, A R+

DotProduct X, X R
Add X, X X
Detach X X
Mean List[R] R
Variance List[X] R+

Mean List[X] X
Mapped L2 Norm List[X] List[R]
Average Distance List[X], X R
Minus List[X], X List[X]

Note that X stands for the option of being F or A. NearestNeighborRegressor takes a query and a target, automatically
creates a buffer of the target (thus keeps a list as a state) and answers based on the buffer. RunningNorm keeps track of the
variance of the input and normalizes by that variance.

2) Reward combiner operations:

Operation Input type(s) State Output type
Constant {0.01,0.1,0.5,1} R
NormalDistribution R
Add R, R R
Max R, R R
Min R, R R
WeightedNormalizedSum R, R, R, R R
RunningNorm R R R
VariableAsBuffer R List[R] List[R]
Subtract R, R R
Multiply R, R R
Sqrt(Abs(x)) R R+

Mean List[R] R

Note that WeightedNormalizedSum(a,b,c,d) = ab+cd
|a|+|c| . RunningNorm keeps track of the variance of the input and

normalizes by that variance.

B. Two other published algorithms covered by our DSL

Fig. 5. Curiosity by predictive error on inverse features by [3]. In pink, paths and networks where gradients flow back from the minimizer.

Fig. 6. Self-supervised exploration via disagreement [11]. In pink, paths and networks where gradients flow back from the minimizer.

C. Improving the efficiency of our search

We wish to find curiosity programs that work effectively in
a wide range of environments, from simple to complex. How-
ever, evaluating tens of thousands of programs in the most
expensive environments would consume decades of GPU
computation. Therefore, we designed multiple strategies for
quickly discarding less promising programs and focusing
computation on a few promising programs. In doing so, we
take inspiration from efforts in the AutoML community [16].

We divide these pruning efforts into three categories: sim-
ple tests that are independent of running the program in any
environment, “filtering” by ruling out some programs based
on poor performance in simple environments, and “meta-
meta-RL”: learning to predict which curiosity programs will
produce good RL agents based on syntactic features.

1) Pruning invalid algorithms without running them:
Many programs are obviously bad curiosity programs. We
have developed two heuristics to immediately prune these
programs without an expensive evaluation.
• Checking that programs are not duplicates. Since our

language is highly expressive, there are many non-
obvious ways of getting equivalent programs. To find
duplicates, we designed a randomized test where we
identically seed two programs, feed them both identical
fake environment data for tens of steps and check
whether their outputs are identical.

• Checking that the loss functions cannot be minimized
independently of the input data. Many programs opti-
mize some loss depending on neural network regres-
sors. If we treat inputs as uncontrollable variables and
networks as having the ability to become any possible
function, then for every variable, we can determine
whether neural networks can be optimized to minimize
it, independently of the input data. For example, if
our loss function is |NNθ (s)|2 the neural network can
learn to make it 0 by disregarding s and optimizing the
weights θ to 0. We discard any program that has this
property.

2) Pruning algorithms in cheap environments: Our ulti-
mate goal is to find algorithms that perform well on many
different environments, both simple and complex. We make
two key observations. First, there may be only tens of
reasonable programs that perform well on all environments
but hundreds of thousands of programs that perform poorly.
Second, there are some environments that are solvable in
a few hundred steps while others require tens of millions.
Therefore, a key idea in our search is to try many programs
in cheap environments and only a few promising candidates
in the most expensive environments. This was inspired by the
effective use of sequential halving [17] in hyper-parameter
optimization [18].

By pruning programs aggressively, we may be losing
multiple programs that perform well on complex environ-
ments. However, by definition, these programs will tend to
be less general and robust than those that succeed in all
environments. Moreover, we seek generalization not only

for its own sake, but also to ease the search since, even
if we only cared about the most expensive environment,
performing the complete search only in this environment
would be impractical.

3) Predicting algorithm performance: Perhaps surpris-
ingly, we find that we can predict program performance
directly from program structure. Our search process boot-
straps an initial training set of (program structure, program
performance) pairs, then uses this training set to select the
most promising next programs to evaluate. We encode each
program’s structure with features representing how many
times each operation is used, thus having as many features
as number of operations in our vocabulary. We use a k-
nearest-neighbor regressor, with k = 10. We then try the
most promising programs and update the regressor with their
results. Finally, we add an ε-greedy exploration policy to
make sure we explore all the search space. Even though
the correlation between predictions and actual values is only
moderately high (0.54 on a holdout test), this is enough to
discover most of the top programs searching only half of
the program space, which is our ultimate goal. Results are
shown in figures 7, 8.

Fig. 7. Predicting algorithm performance from the structure of the program
alone. Comparison between predicted and actual performance on a test set;
showing a correlation of 0.54. In black, the identity line.

We can also prune algorithms during the training process
of the RL agent. In particular, at any point during the meta-
search, we use the top K current best programs as bench-
marks for all T time-steps. Then, during the training of a
new candidate program we compare its current performance
at time t with the performance at time t of the top K programs
and stop the run if its performance is significantly lower. If
the program is not pruned and reaches the final time-step T
with one of the top K performances, it becomes part of the
benchmark for the future programs.

D. Experiments

Our RL agent uses PPO [19] based on
the implementation by [20] in PyTorch [21].

Fig. 8. Predicting algorithm performance allows us to find the best
programs faster. We investigate the number of the top 1% of programs found
vs. the number of programs evaluated, and observe that the optimized search
(in blue) finds 88% of the best programs after only evaluating 50% of the
programs (highlighted in green). The naive search order would have only
found 50% of the best programs at that point.

Our code (https://github.com/mfranzs/
meta-learning-curiosity-algorithms) can take
in any OpenAI gym environment [14] with a specification
of the desired exploration horizon T .

We evaluate each curiosity algorithm for multiple trials,
using a seed dependent on the trial but independent of the
algorithm, which leads to the PPO weights and curiosity
data-structures being initialized identically on the same trials
for all algorithms. As is common in PPO, we run multiple
rollouts (5, except for MuJoCo which only has 1), with inde-
pendent experiences but shared policy and curiosity modules.
Curiosity predictions and updates are batched across these
rollouts, but not across time. PPO policy updates are batched
both across rollouts and multiple timesteps.

1) First search phase in simple environment: We start
by searching for a good intrinsic curiosity program I in a
purely exploratory environment, designed by [22], which is
an image-based grid world where agents navigate in an image
of a 2D room either by moving forward in the grid or rotating
left or right. We optimize the total number of distinct cells
visited across the agent’s lifetime. This allows us to evaluate
intrinsic reward programs in a fast and simple environment,
without worrying about combining it with external reward.

To bias towards simple, interpretable algorithms and keep
the search space manageable, we search for programs with
at most 7 operations. We first discard duplicate and invalid
programs, as described in section C.1, resulting in about
52,000 programs. We then randomly split the programs
across 4 machines, each with 8 Nvidia Tesla K80 GPUs for
10 hours; thus a total of 13 GPU days.

Each machine finds the highest-scoring 625 programs in
its section of the search space and prunes programs whose
partial learning curve is statistically significantly lower than

Fig. 9. Fast Action-Space Transition(FAST): top-performing intrinsic
curiosity algorithm discovered in our phase 1 search.

the current top 625 programs. To do so, after every episode
of every trial, we check whether the mean performance of
the current program is below the mean performance (at that
point during the trial) of the top 625 programs minus two
standard deviations of their performance minus one deviation
of our estimate of the mean of the current program. Thus,
we account for both inter-program variability among the top
625 programs and intra-program variability among multiple
trials of the same program.

We use a 10-nearest-neighbor regressor to predict program
performance and choose the next program to evaluate with
an ε-greedy strategy, choosing the best predicted program
90% of the time and a random program 10% of the time.
By doing this, we try the most promising programs early in
our search. This is important for two reasons: first, we only
try 26,000 programs, half of the whole search space, which
we estimated from earlier results (shown in figure 8) would
be enough to get 88% of the top 1% of programs. Second,
the earlier we run our best programs, the higher the bar for
later programs, thus allowing us to prune them earlier, further
saving computation time. Searching through this space took
a total of 13 GPU days. As shown in figure 10, we find that
most programs perform relatively poorly, with a long tail of
programs that are statistically significantly better, comprising
roughly 0.5% of the whole program space.

The highest scoring program (a few other programs have
lower average performance but are statistically equivalent)
is surprisingly simple and meaningful, comprised of only 5
operations, even though the limit was 7. This program, which
we call FAST (Fast Action-Space Transition), is shown in
figure 9; it uses a single neural network (a CNN or MLP
depending on the type of state) to predict the action from
st+1 and then compares its predictions based on st with its
predictions based on st+1, generating high intrinsic reward
when the difference is large. The action prediction loss
module either computes a softmax followed by NLL loss or

https://github.com/mfranzs/meta-learning-curiosity-algorithms
https://github.com/mfranzs/meta-learning-curiosity-algorithms

Fig. 10. In black, mean performance across 5 trials for all 26,000 programs
evaluated (out of their finished trials). In green mean plus one standard devi-
ation for the mean estimate and in red one minus one standard deviation for
the mean estimate. On the right, you can see program means form roughly a
gaussian distribution of very big noise (thus probably not significant) with a
very small (between 0.5% and 1% of programs) long tail of programs with
statistically significant performance (their red dots are much higher than
almost all green dots), composed of algorithms leading to good exploration.

appends zeros to the action to match dimensions and applies
MSE loss, depending on the type of the action space. Some
versions of FAST predict the action from st instead of st+1,
so this seems to not be a critical decision. Note that this
is not the same as rewarding taking a different action in
the previous time-step. The network predicting the action
is learning to imitate the policy learned by the internal RL
agent, because the curiosity module does not have direct
access to the RL agent’s internal state.

Of the top 16 programs, 13 are variants of FAST, in-
cluding versions that predict the action from st instead of
st+1. The other 3 are variants of a pretty complex program
that is hard to understand at first glance, combining 3 neural
networks, 2 different prediction losses and leveraging weight
sharing in a clever way; the diagram and explanation is
in figure 4. Interestingly, to the best of our knowledge
neither algorithm had been proposed before: we conjecture
the former was too simple for humans to believe it would be
effective and the latter too hard for humans to design, as it
was already very hard to understand in hindsight.

2) Transferring to new environments: Our reward com-
biner was developed in lunar lander (the simplest environ-
ment with meaningful extrinsic reward) based on the best
program among a preliminary set of 16,000 programs (which
resembled Random Network Distillation, its computation
graph is shown in appendix E). Among a set of 2,500 can-
didates (with 5 or less operations) the best reward combiner
discovered by our search was r̂t =

(1+it−t/T)·it+t/T ·rt
1+it

. When

t = 0, this evaluates to it . When t = T , this evaluates to i2+r
1+i ,

which is r when 0 ≤ i << 1. Thus, the combiner roughly
interpolates from purely intrinsic reward to purely extrinsic
reward, if the intrinsic reward has started to drop down to 0
by the end. In future work, we hope to co-adapt the search

Fig. 11. Correlation between program performance in gridworld and
in harder environments (lunar lander on top, acrobot on the bottom),
using the top 2,000 programs in gridworld. Performance is evaluated
using mean reward across all learning episodes, averaged over trials
(two trials for acrobot / lunar lander and five for gridworld). The
high number of algorithms performing around -300 in the middle
of the bottom plot is an artifact of averaging the performance
of two seeds and the mean performance in Acrobot having two
peaks. Almost all intrinsic curiosity programs that had statistically
significant performance for grid world also do well on the other two
environments. In green, the performance of three published works;
in increasing gridworld performance: disagreement [11], inverse
features [3] and random distillation [4].

for intrinsic reward programs and combiners as well as find
multiple reward combiners.

Given the fixed reward combiner and the list of 2,000
selected programs found in the image-based grid world, we
evaluate the programs on both lunar lander and acrobot,
in their discrete action space versions. Notice that both
environments have much longer horizons than the image-
based grid world (37,500 and 50,000 vs 2,500) and they have
vector-based inputs, not image-based. The results in figure 11
show good correlation between performance on grid world
and on each of the new environments. Especially interesting
is that, for both environments, when intrinsic reward in grid
world is above 400 (the start of the statistically significant
performances), performance on the other two environments
is also good in more than 90% of cases.

Class Ant Hopper
Baseline algorithms [-95.3, -39.9] [318.5, 525.0]

Meta-learned algorithms [+67.5, +80.0] [589.2, 650.6]
Published algorithms [+67.4, +98.8] [627.7, 692.6]

TABLE I
META-LEARNED ALGORITHMS PERFORM SIGNIFICANTLY BETTER THAN

CONSTANT REWARDS AND STATISTICALLY EQUIVALENTLY TO

PUBLISHED ALGORITHMS FOUND BY HUMAN RESEARCHERS (SEE 2).
THE TABLE SHOWS THE CONFIDENCE INTERVAL (ONE STANDARD

DEVIATION) FOR THE MEAN PERFORMANCE (ACROSS TRIALS, ACROSS

ALGORITHMS) FOR EACH ALGORITHM CATEGORY. PERFORMANCE IS

DEFINED AS MEAN EPISODE REWARD FOR ALL EPISODES.

Finally, we evaluate on two MuJoCo environments [23]:
hopper and ant. These environments have more than an
order of magnitude longer exploration horizon than acrobot
and lunar lander, exploring for 500K time-steps, as well
as continuous action-spaces instead of discrete. We then
compare the best 16 programs on grid world (most of which
also did well on lunar lander and acrobot) to four weak
baselines (constant 0,-1,1 intrinsic reward and Gaussian
noise reward) and the three published algorithms expressible
in our language (shown in figure 2). We run two trials for
each algorithm and pool all results in each category to get
a confidence interval for the mean of that category. All
trials used the reward combiner found on lunar lander. For
both environments we find that the performance of our top
programs is statistically equivalent to published work and
significantly better than the weak baselines, confirming that
we meta-learned good curiosity programs.

Note that we meta-trained our intrinsic curiosity programs
only on one environment (GridWorld) and showed they
generalized well to other very different environments: they
perform better than published works in this meta-train task
and one meta-test task (Acrobot) and on par in the other
3 tasks meta-test tasks. Adding more meta-training tasks
would be as simple as standardising the performance within
each task (to make results comparable) and then selecting
the programs with best mean performance. We chose to only
meta-train on a single, simple, task because it (surprisingly!)
already gave great results; highlighting the broad
generalization of meta-learning program representations.

E. Algorithm used to optimize reward combiner

Fig. 12. Top variant in preliminary search on grid world; variant on random
network distillation using an ensemble of trained networks instead of a
single one.

F. Related work

There has been much interesting work in designing
intrinsic curiosity algorithms. We take inspiration from
many of them to design our domain-specific language. In
particular, we rely on the idea of using neural network
training as an implicit memory, which scales well to
millions of time-steps, as well as buffers and nearest-
neighbour regressors. As we showed in figure 2 we can
represent several prominent curiosity algorithms. We can
also generate meaningful algorithms similar to novelty
search [12] and EX2 [13]; which include buffers and nearest
neighbours. However, there are many exploration algorithm
classes that we do not cover, such as those focusing on
generating goals [24], [25], [26], learning progress [27],
[28], [29], generating diverse skills [30], stochastic neural
networks [31], [32], count-based exploration [33] or object-
based curiosity measures [34]. Finally, part of our motivation
stems from [35] showing that some bonus-based curiosity
algorithms have trouble generalising to new environments.

There have been research efforts on meta-learning explo-
ration policies: [8], [9] learn an LSTM that explores an
environment for one episode, retains its hidden state and
is spawned in a second episode in the same environment;
by training the network to maximize the reward in the
second episode alone it learns to explore efficiently in the
first episode. [36] improves their exploration and that of [6]
by considering the importance of sampling in RL policies.
[37] combine gradient-based meta-learning with a learned
latent exploration space in which they add structured noise
for meaningful exploration. Closer to our formulation, [38]
parametrize an intrinsic reward function which influences

policy-gradient updates in a differentiable manner, allowing
them to backpropagate through a single step of the policy-
gradient update to optimize the intrinsic reward function for
a single task. In contrast to all three of these methods, we
search over algorithms, which will allows us to generalize
more broadly and to consider the effect of exploration on up
to 105−106 time-steps instead of the 102−103 of previous
work. Finally, [39], [40] have a setting similar to ours where
they modify reward functions over the entire agent’s lifetime,
but instead of searching over intrinsic curiosity algorithms
they tune the parameters of a hand-designed reward function.

In some regards our work is similar to neural architec-
ture search (NAS) [41], [42], [43], [44] or hyperparameter
optimization for deep networks [45], which aim at finding
the best neural network architecture and hyper-parameters
for a particular task. However, in contrast to most (but not
all, see [46]) NAS work, we want to generalize to many
environments instead of just one. Moreover, we search over
programs, which include non-neural operations and data
structures, rather than just neural-network architectures, and
decide what loss functions to use for training. Our work
also resembles work in the AutoML community [16] that
searches in a space of programs, for example in the case
of SAT solving [47] or auto-sklearn [48] and concurrent
work on learning loss functions to replace cross-entropy
for training a fixed architecture on MNIST and CIFAR
[49], [50]. Although we take inspiration from ideas in that
community [18], [51], our algorithms specify both how to
compute their outputs and their own optimization objectives
in order to work well in synchrony with an expensive deep
RL algorithm.

There has been work on meta-learning with genetic
programming [52], searching over mathematical operations
within neural networks [53], [54], searching over programs
to solve games [55], [56], [57] and to optimize neural
networks [58], [59], and neural networks that learn pro-
grams [60], [61]. Our work uses neural networks as basic
operations within larger algorithms. Finally, modular meta-
learning [62], [63] trains the weights of small neural modules
and transfers to new tasks by searching for a good compo-
sition of modules; as such, it can be seen as a (restricted)
dual of our approach.

Meta-learning [52], [64], [65] aims at learning transferable
representations from many tasks in order to learn a new
task more efficiently. Most work on meta-RL has focused
on learning transferable feature representations or parameter
values for quickly adapting to new tasks [6], [66], [7] or
improving performance on a single task [67], [68]. However,
the range of variability between tasks is typically limited
to variations of the same goal (such as moving at different
speeds or to different locations) or generalizing to different
environment variations (such as different mazes or different
terrain slopes). There have been some attempts to broaden
the spectrum of generalization, showing transfer between
Atari games thanks to modularity [69], [70] or proper pre-
training [71]. However, as noted by [72], Atari games are
too different to get big gains with current feature-transfer

methods; they instead suggest using different levels of the
game Sonic to benchmark generalization. Moreover, [73]
recently proposed a benchmark of many tasks. [74] auto-
matically generate different terrains for a bipedal walker and
transfer policies between terrains, showing that this is more
effective than learning a policy on hard terrains from scratch;
similar to our suggestion in section C.2. In contrast to
these methods, we aim at generalization between completely
different environments, even between environments that do
not share the same state and action spaces.

Closest to our work, evolved policy gradients (EPG,
[75]) use evolutionary strategies to meta-learn a neural
network that acts as a loss function and is used to train
a policy network. EPG generalizes by meta-training with
target locations east of the start location and meta-testing
with target locations to the west. In contrast, we showed
that by meta-learning programs, we can generalize between
radically different environments, not just goal variations of a
single environment. Concurrent to our work, [76] also show
generalization capabilities between environments similar to
ours (lunar lander, hopper and half-cheetah). Their approach
transfers a parametric representation, for which it is unclear
how to adapt the learned neural losses to an unseen envi-
ronment with a different observation space. Their approach
thus does not encode states into the loss function, which is
critical for efficient exploration. In contrast, our algorithms
can leverage polymorphic data types that adapt the neural
networks to the environment they are running in, adapting
both the size and the type of network (CNN vs MLP) running
in each environment.

